| 网站首页 | 业界新闻 | 小组 | 威客 | 人才 | 下载频道 | 博客 | 代码贴 | 在线编程 | 编程论坛
欢迎加入我们,一同切磋技术
用户名:   
 
密 码:  
共有 30811 人关注过本帖
标题:各位老师好!求助编辑一个大整数的快速乘除法可调用程序
只看楼主 加入收藏
ysr2857
Rank: 16Rank: 16Rank: 16Rank: 16
等 级:版主
威 望:34
帖 子:809
专家分:77
注 册:2020-2-10
收藏
得分:0 
优化的程序,一位一组的,没有完成速度提高不明显,暂时发一下:(有空在接着弄吧,有提升空间)

Dim l As Long, le As Long, le1 As Long, n As Long, r As Long, p As Long, q As Long, m As Byte
  Dim wr As Double, w1 As Double, wlr As Double, wl1 As Double, tr As Double, t1 As Double
  Dim pi As Double, t As Double, tr1 As Double

Private Sub Command1_Click()
  Dim xr() As Double, a As String
  a = Trim(Text1)
  b = Trim(Text3)
  ts = Timer
  
  Text2 = js & "有" & Len(js) & "位,用时" & Timer - ts & "秒"
  sb1 = Len(a) + Len(b)
  sb2 = Log(sb1) / Log(2)
  If InStr(sb2, ".") = 0 Then
  sb2 = sb2
  Else
  sb2 = Int(sb2) + 1
  End If
  sb = 2 ^ sb2
  Print sb
  If Len(a) = Len(b) And 2 ^ (Int(Log(Len(a)) / Log(2))) = Len(a) Then
    a = String(Val(sb) - Len(a), "0") & a
  b = String(Val(sb) - Len(b), "0") & b
  ax = a: bx = b
  Else

  a = String(Val(sb) - Len(a), "0") & a
  b = String(Val(sb) - Len(b), "0") & b
  ax = a: bx = b
  End If
  Dim y_() As Double, x_() As Double
  ReDim x_(1 To sb): ReDim y_(1 To sb)
    For i1 = 1 To sb
    x_(i1) = Mid(ax, sb - i1 + 1, 1): y_(i1) = Mid(bx, sb - i1 + 1, 1)
      Next
    Dim n As Integer, I As Long, J As Long, mn As Long, lh As Long, t As Double, k As Long
    '位序倒置
n = sb '求数组大小,其值必须是2的幂
lh = n / 2
    J = n / 2
    For I = 1 To n - 2


    Debug.Print I, J
    k = lh '下面是向右进位算法
Do
    If k > J Then Exit Do '高位是1吗
J = J - k '是的,高位置0
    k = k / 2 '准备次高位的权
Loop Until k = 0 '次高位的权若非0,则检查新的次高位
J = J + k '非则若最高位是0,则置1
    s = s & x_(J + 1)
    s1 = s1 & y_(J + 1)
    Next
    a = x_(1) & x_(1 + sb / 2) & s
    b = y_(1) & y_(1 + sb / 2) & s1
  
  ReDim xr(0 To Len(a) - 1): ReDim yr(0 To Len(b) - 1): ReDim zr(0 To Len(b) - 1)
  For i1 = 0 To Len(a) - 1
  xr(i1) = Mid(a, i1 + 1, 1)
  yr(i1) = Mid(b, i1 + 1, 1)

     Next
  
  Dim xi(): Dim yi(): Dim zi()
  n = Len(a) '求数组大小,其值必须是2的幂
m = 0
  l = 2
  pi = 3.14159265358979
  Do
  l = l + l
  m = m + 1
  Loop Until l > n
  n = l / 2
  ReDim xi(n - 1): ReDim yi(n - 1): ReDim zi(n - 1)

  l = 1
  Do
    le = 2 ^ l
    le1 = le / 2
    wr = 1
    wi = 0
    If l = 1 Then
    t = 0
    Else
    t = pi / le1
    End If
    w1r = Cos(t)
    w1i = -Sin(t)
    r = 0
  Do
    p = r
    Do
     q = p + le1
     
     tr = xr(q) * wr - xi(q) * wi
     ti = xr(q) * wi + xi(q) * wr
     tr1 = yr(q) * wr - yi(q) * wi
     ti1 = yr(q) * wi + yi(q) * wr
     
     
     xr(q) = xr(p) - tr
     xi(q) = xi(p) - ti
     xr(p) = xr(p) + tr
     xi(p) = xi(p) + ti
     
       yr(q) = yr(p) - tr1
      yi(q) = yi(p) - ti1
      yr(p) = yr(p) + tr1
      yi(p) = yi(p) + ti1
     
      p = p + le
  Loop Until p > n - 1


  wr2 = wr * w1r - wi * w1i
  wi2 = wr * w1i + wi * w1r
  wr = wr2
  wi = wi2
  r = r + 1
  Loop Until r > le1 - 1
  l = l + 1
  Loop Until l > m

  For I = 0 To n - 1 '仅输出模
   zr(I) = xr(I) * yr(I) - xi(I) * yi(I): zi(I) = xr(I) * yi(I) + xi(I) * yr(I)
      

      's = s & "/" & zr(I)
      's1 = s1 & "/" & zi(I)
      Next
      
       J = sb
     
       ReDim x_(1 To sb): ReDim y_(1 To sb)
     For k = 1 To J
         n1 = n1 + 1
          ReDim Preserve x_(1 To n1)
        
         x_(n1) = zr(n1 - 1): y_(n1) = zi(n1 - 1)
       Next
   
    '位序倒置
n = sb '求数组大小,其值必须是2的幂
lh = n / 2
    J = n / 2
    For I = 1 To n - 2


    Debug.Print I, J
    k = lh '下面是向右进位算法
Do
    If k > J Then Exit Do '高位是1吗
J = J - k '是的,高位置0
    k = k / 2 '准备次高位的权
Loop Until k = 0 '次高位的权若非0,则检查新的次高位
J = J + k '非则若最高位是0,则置1
    js = js & "/" & x_(J + 1)
    js1 = js1 & "/" & y_(J + 1)
    Next
    sx1 = "/" & x_(1) & "/" & x_(1 + sb / 2) & js
    sy1 = "/" & y_(1) & "/" & y_(1 + sb / 2) & js1
   
   
   
   
   
      
      
     's2 = nifft(dxcx1(Trim(s)), dxcx1(Trim(s1)), Trim(sb1))
     s3 = nifft(Trim(sx1), Trim(sy1), Trim(sb1))
      Text2 = s3 & "有" & Len(s3) & "位,用时" & Timer - ts & "秒"
  End Sub

  Private Sub Command2_Click()
  Text1 = ""
  Text2 = ""
  Text3 = ""
  Form1.Cls
  End Sub

Private Function qdqd0(sa As String) As String
  a = sa
  Do While Left(a, 1) = "0"
  a = Mid(a, 2)
  Loop
  If a = "" Then
  a = 0
  Else
  a = a
  End If
  qdqd0 = a
  End Function

  Private Function nifft(sa As String, sb As String, sb1 As String) As String
  
  Dim xi(): Dim yi(): Dim zi()
  Dim xr(), yr(), zr()
  s2 = Split(sa, "/")
  s3 = Split(sb, "/")
      J = UBound(s2)
      n = J
     For k = 1 To J
         n1 = n1 + 1
          ReDim Preserve xr(0 To n1 - 1)
          ReDim Preserve yr(0 To n1 - 1)
         xr(n1 - 1) = s2(n1): yr(n1 - 1) = s3(n1)
       Next
     

  ReDim zr(0 To J - 1)

  m = 0
  l = 2
  pi = 3.14159265358979
  Do
  l = l + l
  m = m + 1
  Loop Until l > n
  n = l / 2
  ReDim xi(n - 1): ReDim yi(n - 1): ReDim zi(n - 1)

  l = 1
  Do
    le = 2 ^ l
    le1 = le / 2
    wr = 1
    wi = 0
    If l = 1 Then
    t = 0
    Else
    t = -1 * pi / le1
    End If
    w1r = Cos(t)
    w1i = -Sin(t)
    r = 0
  Do
    p = r
    Do
     q = p + le1
     
     tr = xr(q) * wr - xi(q) * wi
     ti = xr(q) * wi + xi(q) * wr
     tr1 = yr(q) * wr - yi(q) * wi
     ti1 = yr(q) * wi + yi(q) * wr
     
     
     xr(q) = xr(p) - tr
     xi(q) = xi(p) - ti
     xr(p) = xr(p) + tr
     xi(p) = xi(p) + ti
     
       yr(q) = yr(p) - tr1
      yi(q) = yi(p) - ti1
      yr(p) = yr(p) + tr1
      yi(p) = yi(p) + ti1
     
      p = p + le
  Loop Until p > n - 1


  wr2 = wr * w1r - wi * w1i
  wi2 = wr * w1i + wi * w1r
  wr = wr2
  wi = wi2
  r = r + 1
  Loop Until r > le1 - 1
  l = l + 1
  Loop Until l > m

  For I = 0 To n - 1 '仅输出模
zr(I) = (xr(I) - yi(I)) / n
      
     
      s1 = Int(Val(zr(I) + 0.5))
      s = "/" & s1 & s
      zr(I) = s1
      Next
      For i1 = 1 To Val(J - sb1 + 1)
      zr(sb1 + i1 - 2) = 0
      Next
      
     
     
      For i1 = 0 To n - 1
      If zr(i1) < 0 Then
      zr(i1) = 0
      Else
      zr(i1) = zr(i1)
      End If
      
      s5 = "/" & Int(zr(i1)) & s5
      If i1 = 0 Then
      s6 = Int(zr(i1)) \ 10
      s8 = Int(zr(i1)) Mod 10
      ElseIf Val(zr(i1)) >= 0 Then
      s7 = Int(zr(i1)) + Val(s6)
      s10 = Val(s7) Mod 10
      s11 = s10 & s11
      s6 = Val(s7) \ 10
      Else
      s6 = Val(s6)
      End If
     
      Next
      s9 = s6 & s11 & s8
     
  nifft = qdqd0(Trim(s9))

  End Function

  Private Function dxcx0(sa As String, sb As String) As String

  Dim x_() As Double, a As String
    a = Trim(sa)
    ReDim x_(1 To sb)
    For i1 = 1 To sb
    x_(i1) = Mid(a, sb - i1 + 1, 1)
      Next
    Dim n As Integer, I As Long, J As Long, mn As Long, lh As Long, t As Double, k As Long
    '位序倒置
n = sb '求数组大小,其值必须是2的幂
lh = n / 2
    J = n / 2
    For I = 1 To n - 2


    Debug.Print I, J
    k = lh '下面是向右进位算法
Do
    If k > J Then Exit Do '高位是1吗
J = J - k '是的,高位置0
    k = k / 2 '准备次高位的权
Loop Until k = 0 '次高位的权若非0,则检查新的次高位
J = J + k '非则若最高位是0,则置1
    s = s & x_(J + 1)
    Next
    dxcx0 = x_(1) & x_(1 + sb / 2) & s
   

  End Function

Public Function MbC(D1 As String, D2 As String) As String '乘法
Dim x, Y '两数长度
x = Len(D1): Y = Len(D2)
Dim a() As Integer
ReDim a(1 To x + Y, 1 To Y)
Dim I, J, C1, C2, CJ, JW
For J = Y To 1 Step -1 'D2
JW = 0 '进位清0
C2 = Mid$(D2, J, 1) '每位数
For I = x To 1 Step -1 'D1
  C1 = Mid$(D1, I, 1) '每位数
  CJ = C1 * C2 + JW '计算乘积
  c = I + J: r = Y + 1 - J
  a(c, r) = CJ Mod 10 '本位
  JW = CJ \ 10 '进位
Next
a(c - 1, r) = JW
Next
Dim b() As Integer
ReDim b(1 To x + Y)
JW = 0
For I = x + Y To 1 Step -1
Bit = JW
For J = 1 To Y
  Bit = Bit + a(I, J)
Next
b(I) = Bit Mod 10
JW = Bit \ 10
Next
If b(1) > 0 Then
MbC = MbC & b(1)
Else
MbC = MbC
End If
For I = 2 To x + Y
MbC = MbC & b(I)
Next
End Function

  Private Function dxcx1(sa As String) As String

  Dim x_() As Double, a As String
    a = Trim(sa)
     

  s2 = Split(sa, "/")
  s3 = Split(sb, "/")
      J = UBound(s2)
      sb = J
     
       ReDim x_(1 To sb)
     For k = 1 To J
         n1 = n1 + 1
          ReDim Preserve x_(1 To n1)
        
         x_(n1) = s2(n1)
       Next
    Dim n As Integer, I As Long, mn As Long, lh As Long, t As Double
    '位序倒置
n = sb '求数组大小,其值必须是2的幂
lh = n / 2
    J = n / 2
    For I = 1 To n - 2


    Debug.Print I, J
    k = lh '下面是向右进位算法
Do
    If k > J Then Exit Do '高位是1吗
J = J - k '是的,高位置0
    k = k / 2 '准备次高位的权
Loop Until k = 0 '次高位的权若非0,则检查新的次高位
J = J + k '非则若最高位是0,则置1
    s = s & "/" & x_(J + 1)
    Next
    dxcx1 = "/" & x_(1) & "/" & x_(1 + sb / 2) & s
   
    End Function


[此贴子已经被作者于2021-3-20 21:31编辑过]

2021-03-20 14:41
ysr2857
Rank: 16Rank: 16Rank: 16Rank: 16
等 级:版主
威 望:34
帖 子:809
专家分:77
注 册:2020-2-10
收藏
得分:0 
回复 225楼 ysr2857
这是模仿手工计算的程序结果,看上去比傅立叶变换的程序还快?结果如下:
51750801837147361345408953922231823615475578427966187002956389087112242842559611794590895524485015222232340190036677951157401229518412775512617768569186939216558814320044037671525512763073762127357272238470370174050144130962253437215369727381909754581075278888137687950749577751967083233227932391898438489520107788418593104216764745143648165875043861634459264809523254076330115365651752264033578829280651927862062277153553168278640509846511729608378923480331705134467105387853440058108864733429085916392927954109944314725590758950098556991513109760871599045355054258610189920009222629391227784118536578933067532162200768112408111142115021110731900107445187734955403922470144187293970602024056652942406064101184615113779243566842311336047149767396006622923831778833173731302325162741660053390002572456069410383734906953419854919650114722834689335022576764661864630532595250136417800041415827379233503655173380741283758557001102498493237113089198106283487003030225058520047964863929279622015825870972146222540614667928697270131499340362072956956518213266361286372027834000838185920579641835952404678850816456467012890793914108776148483471455515695596694573035435841962871983614397882366460940068418989292218104650923374259244879331938925143014431488635252724366437874702141802712286424754174951797598162531093933772708024046029028652425912112434874797404878317364682580259997737809632860143160557722236459697738869857870982308547756781808568834445404196611833859447257611721058384661943492980180884154939581533269700568975940675513953240040220315659784214936947443784598154082110443748171557676558299300252057475022409541083454882202785077569281268346332901357829843950754331120530978456454396022570647840977328115888711408099894489014427119253061839770890965114853246067272044090282103668762164047374624856119676063310166566519499552342907590495696658359542582469176737197423550084705962160477441546453931948920780829433665262356431973422034925001341330921812806939990688094288773216182971976433480031438271163051341645350474631300965486818841553843112688792803367397276204832936049162335586140151875524537720425345701193713093955432559579831822084761702059241698184717469616732582600658006352069963017377661059372648121969448644394344799369193952197519795756182552461838014896498816263546256621347748100920475049252091842372001283217811864786225692344297842649982716736752004086642881662614773154743879410328420184057019873899911520017723788801*
51750801837147361345408953922231823615475578427966187002956389087112242842559611794590895524485015222232340190036677951157401229518412775512617768569186939216558814320044037671525512763073762127357272238470370174050144130962253437215369727381909754581075278888137687950749577751967083233227932391898438489520107788418593104216764745143648165875043861634459264809523254076330115365651752264033578829280651927862062277153553168278640509846511729608378923480331705134467105387853440058108864733429085916392927954109944314725590758950098556991513109760871599045355054258610189920009222629391227784118536578933067532162200768112408111142115021110731900107445187734955403922470144187293970602024056652942406064101184615113779243566842311336047149767396006622923831778833173731302325162741660053390002572456069410383734906953419854919650114722834689335022576764661864630532595250136417800041415827379233503655173380741283758557001102498493237113089198106283487003030225058520047964863929279622015825870972146222540614667928697270131499340362072956956518213266361286372027834000838185920579641835952404678850816456467012890793914108776148483471455515695596694573035435841962871983614397882366460940068418989292218104650923374259244879331938925143014431488635252724366437874702141802712286424754174951797598162531093933772708024046029028652425912112434874797404878317364682580259997737809632860143160557722236459697738869857870982308547756781808568834445404196611833859447257611721058384661943492980180884154939581533269700568975940675513953240040220315659784214936947443784598154082110443748171557676558299300252057475022409541083454882202785077569281268346332901357829843950754331120530978456454396022570647840977328115888711408099894489014427119253061839770890965114853246067272044090282103668762164047374624856119676063310166566519499552342907590495696658359542582469176737197423550084705962160477441546453931948920780829433665262356431973422034925001341330921812806939990688094288773216182971976433480031438271163051341645350474631300965486818841553843112688792803367397276204832936049162335586140151875524537720425345701193713093955432559579831822084761702059241698184717469616732582600658006352069963017377661059372648121969448644394344799369193952197519795756182552461838014896498816263546256621347748100920475049252091842372001283217811864786225692344297842649982716736752004086642881662614773154743879410328420184057019873899911520017723788801=
2678145490787694710138406683675886762424440548647327525594133873038347266950777818028529804877891353347244255046176220880989519574806598935727647635506939520211209794328712328126947740602255036264392628020291100698432900022333877728824270241063030019536831205264726059774673235680796770108334187808344470141093691232926021244583649747591446066921535333854157441330339217364515328375889937313870826987520723914810358707312468857074455945610038118763873992681688857200178452843740327143990247797893489008808544535536081089994800692174759199578596435124153437689121057209523619989593900355037400039597165241729693472001589594642879166693443994939359639600558001937547209387175085119128575833396037478944824322315197771750730768383267287661855880237549141571520374996029107650341071074081501632143441365461865431362023790463469688071768208320226561675630348708531708110373889241713511809029065048200924851629507265095151843687852114948736130517024578482059771284515915597919026074110811882700307150650858080695566672584075215926450360584738705106755945308199980660478183563586945902705730231409948938478910176292179410952310592864745025373902249844607078729230098512959498522851990040833671698873183076996740726479481352429756295966452788332789259316653805673821716832204368483794501474641036177256005810416507649770210480747056764697918800240201155395628561684853684747063434500664449114760179367086926249813006056735202795763742271472136500817313178050955623517148960973128433455798444839070215800699075256371341531892841721456473301085595261371522078416420399702683504171019191363372883472415693921509069484448792009627325245658854979159002549542769741504596589556474585723101403486046952706847309188488390899096649210853675228464611999630360164703837131620319658277117300208326944026347808645954842782309633205645471959842390075986572806483755223497552549948718545978420793425036666212191832327909389117021539426917904222971515424022606157676379417252939026404363841301595348953340657745965591468370831371449860774296757556463049237248472613472436666799615694672489600751763956185893123579218797539971253828850163437053164723845196089466298000486042246621634263064752906475198879616484926366053597071510886820878425907736453843197228282179943365206039514850477377542684361730162273246709577442085159313947668552462343596819299335060863266863059421286080919061657175757802930378698062290163092494909661982639303946271889619023417245433500782685534406291391527022657608608130680134939380126048353657648559735671562230714451258764762350451448379438849319710473631625533527602085050858633346936315115309333355986556546113134787213610042970405680162084678021281774169131725296977361816657904233850711837826724976507876061043779177845550646612327663283839673950405472039432309339110648301347672597370034346896334064135099613033528785924976781865447506814375627647103020761819104412269362847848884053177378762432543285984193091289854949394023586451139393716370633759317698908834326333339634557238526607966375935960004339535161203546369910853171524516945554862019134684985868547068709986010719120259421723270478586992153989283736650948010894951434857207445141886625290777550599700738909777829412358941157674866550887608199469723859806486384262574182811908513849905040209776132986875560077482527819093584150609347560543627976011009349905362597935257895287412087233810106693141683912683308201407373637490835862452911394718399632093441745957478079754723679119343225931665785380948807114301164623717144211285944154289093317610519159281033583963015810556464180819928345256832572962092994993950655913067768151113345566231088759030148164710287289335782462899525700500822021472132532771242198844498579102733028256523810973405350508253183399668290339844052874956694050028526577775764032598023622192221226501334606994447870277619118208162133562541678250491647671042612088902952091163094215645902682086024337098910110924115381788866213335441814530141911754446270296630426675020592640816713810936850961517475097707179713115856513919631998747192606018612535436009162735908155778165736923393260822217415131632296810207091918499370220533980666393617256227781299273913099896641458499949922475383775878771011361417556799406151773618626138749998464514570482965286184387350245762317271666329142667987131139265167425606863654107927682419958167046956962340419295394058625063862272314570914511355913547470055072878835349142049813368019960713974852351833144227544851625677753419141348585495260230041111323576432417502998832485027071744397105338790364666312325483218209150368759120749671419554589928540715813531144241705501211397506662448276056294585639532800634727428900861538486753011006379264618338782036690340859441153926551954112364946638768223012718907190897165613382555036872673785444132692292217184974818914501886689736449912131900762592363447945036085692999163815947845753538999001633767986447907729462453017601有4888位,用时3.929688秒
2021-03-20 19:23
ysr2857
Rank: 16Rank: 16Rank: 16Rank: 16
等 级:版主
威 望:34
帖 子:809
专家分:77
注 册:2020-2-10
收藏
得分:0 
回复 230楼 ysr2857
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111*111111111=12345678999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999987654321有221位,用时0.2578125秒(经过优化速度略有提高,可能还有提升空间)
2021-03-20 22:27
ysr2857
Rank: 16Rank: 16Rank: 16Rank: 16
等 级:版主
威 望:34
帖 子:809
专家分:77
注 册:2020-2-10
收藏
得分:0 
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111*111111111=12345678999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999987654321有221位,用时0.0859375秒(这个快,是4位一组的程序,还有可以优化的空间)
2021-03-20 23:22
ysr2857
Rank: 16Rank: 16Rank: 16Rank: 16
等 级:版主
威 望:34
帖 子:809
专家分:77
注 册:2020-2-10
收藏
得分:0 
回复 227楼 ysr2857
999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999*9=8999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991有271位,用时0.28125秒(这个是对的,速度还可以,还有提升空间,是4位一组的程序)
2021-03-20 23:52
ysr2857
Rank: 16Rank: 16Rank: 16Rank: 16
等 级:版主
威 望:34
帖 子:809
专家分:77
注 册:2020-2-10
收藏
得分:0 
4位一组的程序重发如下,是修改好的,还有提升空间,希望老师指点,谢谢!代码如下:

Private Sub Command1_Click()
  Dim xr() As String, a As String
  a = Trim(Text1)
  b = Trim(Text3)
  ts = Timer
  x = Len(a) \ 4: Y = Len(b) \ 4
  If Val(4 * x) = Len(a) Then
  a = a
  ElseIf Val(4 * Y) = Len(b) Then
  b = b
  Else
  a = String(Val(x * 4 + 4 - Len(a)), "0") & a
  b = String(Val(Y * 4 + 4 - Len(b)), "0") & b
  x = x + 1: Y = Y + 1
  End If
  
  
  sb1 = x + Y
  sb2 = Log(sb1) / Log(2)
  If InStr(sb2, ".") = 0 Then
  sb2 = sb2
  Else
  sb2 = Int(sb2) + 1
  End If
  sb = 2 ^ sb2
  Print sb
  

  a = String(Val(sb) * 4 - Len(a), "0") & a
  b = String(Val(sb) * 4 - Len(b), "0") & b
  a = dxcx0(Trim(a), Val(sb)): b = dxcx0(Trim(b), Val(sb))
  Print a
  ReDim xr(0 To (Len(a) - 4) \ 4): ReDim yr(0 To (Len(b) - 4) \ 4): ReDim zr(0 To (Len(b) - 4) \ 4)
  If Len(a) = 4 Then
  xr(0) = a: yr(0) = b
  Else
  For i1 = 0 To (Len(a) - 4) \ 4
  xr(i1) = Mid(a, (i1 + 1) * 4 - 3, 4)
  yr(i1) = Mid(b, (i1 + 1) * 4 - 3, 4)

     Next
     End If
  
  Dim xi(): Dim yi(): Dim zi()
  n = Len(a) \ 4 '求数组大小,其值必须是2的幂
m = 0
  l = 2
  pi = 3.14159265358979
  Do
  l = l + l
  m = m + 1
  Loop Until l > n
  n = l / 2
  ReDim xi(n - 1): ReDim yi(n - 1): ReDim zi(n - 1)

  l = 1
  Do
    le = 2 ^ l
    le1 = le / 2
    wr = 1
    wi = 0
    If l = 1 Then
    t = 0
    Else
    t = pi / le1
    End If
    w1r = Cos(t)
    w1i = -Sin(t)
    r = 0
  Do
    p = r
    Do
     q = p + le1
     
     tr = xr(q) * wr - xi(q) * wi
     ti = xr(q) * wi + xi(q) * wr
     tr1 = yr(q) * wr - yi(q) * wi
     ti1 = yr(q) * wi + yi(q) * wr
     
     
     xr(q) = xr(p) - tr
     xi(q) = xi(p) - ti
     xr(p) = xr(p) + tr
     xi(p) = xi(p) + ti
     
       yr(q) = yr(p) - tr1
      yi(q) = yi(p) - ti1
      yr(p) = yr(p) + tr1
      yi(p) = yi(p) + ti1
     xr(p) = Format(Val(xr(p)), "0.000000"): xi(p) = Format(Val(xi(p)), "0.000000")
     yr(p) = Format(Val(yr(p)), "0.000000"): yi(p) = Format(Val(yi(p)), "0.000000")
     Print xr(p), xr(q)
      p = p + le
  Loop Until p > n - 1


  wr2 = wr * w1r - wi * w1i
  wi2 = wr * w1i + wi * w1r
  wr = wr2
  wi = wi2
  r = r + 1
  Loop Until r > le1 - 1
  l = l + 1
  Loop Until l > m

  For I = 0 To n - 1 '仅输出模
   zr(I) = xr(I) * yr(I) - xi(I) * yi(I): zi(I) = xr(I) * yi(I) + xi(I) * yr(I)
      zr(I) = Format(Val(zr(I)), "0.000000"): zi(I) = Format(Val(zi(I)), "0.000000")

      s = s & "/" & zr(I)
      s1 = s1 & "/" & zi(I)
      Next
     s2 = nifft(dxcx1(Trim(s)), dxcx1(Trim(s1)), Trim(sb1))
     
      Text2 = s2 & "有" & Len(s2) & "位,用时" & Timer - ts & "秒"
  End Sub

  Private Sub Command2_Click()
  Text1 = ""
  Text2 = ""
  Text3 = ""
  Form1.Cls
  End Sub

Private Function qdqd0(sa As String) As String
  a = sa
  Do While Left(a, 1) = "0"
  a = Mid(a, 2)
  Loop
  If a = "" Then
  a = 0
  Else
  a = a
  End If
  qdqd0 = a
  End Function


  Private Function nifft(sa As String, sb As String, sb1 As String) As String
  
  Dim xi(): Dim yi(): Dim zi()
  Dim xr(), yr()
  Dim zr() As String
  
  s2 = Split(sa, "/")
  s3 = Split(sb, "/")
      J = UBound(s2)
      n = J
     For k = 1 To J
         n1 = n1 + 1
          ReDim Preserve xr(0 To n1 - 1)
          ReDim Preserve yr(0 To n1 - 1)
         xr(n1 - 1) = s2(n1): yr(n1 - 1) = s3(n1)
         xr(n1 - 1) = Format(Val(xr(n1 - 1)), "0.000000"): yr(n1 - 1) = Format(Val(yr(n1 - 1)), "0.000000")

       Next
     

  ReDim zr(0 To J - 1)

  m = 0
  l = 2
  pi = 3.14159265358979
  Do
  l = l + l
  m = m + 1
  Loop Until l > n
  n = l / 2
  ReDim xi(n - 1): ReDim yi(n - 1): ReDim zi(n - 1)

  l = 1
  Do
    le = 2 ^ l
    le1 = le / 2
    wr = 1
    wi = 0
    If l = 1 Then
    t = 0
    Else
    t = -1 * pi / le1
    End If
    w1r = Cos(t)
    w1i = -Sin(t)
    r = 0
  Do
    p = r
    Do
     q = p + le1
     
     tr = xr(q) * wr - xi(q) * wi
     ti = xr(q) * wi + xi(q) * wr
     tr1 = yr(q) * wr - yi(q) * wi
     ti1 = yr(q) * wi + yi(q) * wr
     
     
     xr(q) = xr(p) - tr
     xi(q) = xi(p) - ti
     xr(p) = xr(p) + tr
     xi(p) = xi(p) + ti
     
       yr(q) = yr(p) - tr1
      yi(q) = yi(p) - ti1
      yr(p) = yr(p) + tr1
      yi(p) = yi(p) + ti1
     xr(p) = Format(Val(xr(p)), "0.000000"): xi(p) = Format(Val(xi(p)), "0.000000")
     yr(p) = Format(Val(yr(p)), "0.000000"): yi(p) = Format(Val(yi(p)), "0.000000")
      p = p + le
  Loop Until p > n - 1


  wr2 = wr * w1r - wi * w1i
  wi2 = wr * w1i + wi * w1r
  wr = wr2
  wi = wi2
  r = r + 1
  Loop Until r > le1 - 1
  l = l + 1
  Loop Until l > m

  For I = 0 To n - 1 '仅输出模
zr(I) = (xr(I) - yi(I)) / n
      zr(I) = Format(Val(zr(I) + 0.5), "0.000000")
     If InStr(zr(I), ".") = 0 Then
     s1 = zr(I)
     Else
     s1 = Left(zr(I), InStr(zr(I), ".") - 1)
      End If
      s = "/" & s1 & s
      zr(I) = s1
      Next
      For i1 = 1 To Val(J - sb1 + 1)
      zr(sb1 + i1 - 2) = 0
      Next
      
     
     
      For i1 = 0 To n - 1
      If zr(i1) < 0 Then
      zr(i1) = "0000"
      ElseIf Len(zr(i1)) < 4 Then
      zr(i1) = String(4 - Len(zr(i1)), "0") & zr(i1)
      Else
      zr(i1) = zr(i1)
      End If
      
      s5 = s5 & "/" & zr(i1)
      
      If i1 = 0 Then
      
      s6 = Val(Left(zr(i1), Len(zr(i1)) - 4))
      If Len(s6) < 4 Then
      s6 = String(4 - Len(s6), "0") & s6
      Else
      s6 = s6
      End If
      s8 = Right(zr(i1), 4)
      ElseIf Val(zr(i1)) >= 0 Then
      s7 = MPC1(Trim(zr(i1)), Trim(s6))
      s10 = Right(s7, 4)
      s11 = s10 & s11
      If Len(s7) < 4 Then
      s7 = String(4 - Len(s7), "0") & s7
      ElseIf Len(s7) = 4 Then
      s6 = "0000"
      Else
      s7 = s7
      s6 = Val(Left(s7, Len(s7) - 4))
      End If
      Else
      s6 = s6
      End If
     
      Next
      s9 = s6 & s11 & s8
     
  nifft = qdqd0(Trim(s9))

  End Function

  Private Function dxcx0(sa As String, sb As String) As String

  Dim x_() As String, a As String
    a = Trim(sa)
    ReDim x_(1 To sb)
    For i1 = 1 To sb
    x_(i1) = Mid(a, (sb - i1 + 1) * 4 - 3, 4)
    If Len(x_(i1)) < 4 Then
    x_(i1) = String(4 - Len(x_(i1)), "0") & x_(i1)
    Else
    x_(i1) = x_(i1)
    End If
   
      Next
    Dim n As Integer, I As Long, J As Long, mn As Long, lh As Long, t As Double, k As Long
    '位序倒置
n = sb '求数组大小,其值必须是2的幂
lh = n / 2
    J = n / 2
    For I = 1 To n - 2


    Debug.Print I, J
    k = lh '下面是向右进位算法
Do
    If k > J Then Exit Do '高位是1吗
J = J - k '是的,高位置0
    k = k / 2 '准备次高位的权
Loop Until k = 0 '次高位的权若非0,则检查新的次高位
J = J + k '非则若最高位是0,则置1
    s = s & x_(J + 1)
    Next
    dxcx0 = x_(1) & x_(1 + sb / 2) & s
   
   

  End Function

  Private Function dxcx1(sa As String) As String

  Dim x_() As Double, a As String
    a = Trim(sa)
     

  s2 = Split(sa, "/")
  s3 = Split(sb, "/")
      J = UBound(s2)
      sb = J
     
       ReDim x_(1 To sb)
     For k = 1 To J
         n1 = n1 + 1
          ReDim Preserve x_(1 To n1)
        
         x_(n1) = Format(Val(s2(n1)), "0.000000")
       Next
    Dim n As Integer, I As Long, mn As Long, lh As Long, t As Double
    '位序倒置
n = sb '求数组大小,其值必须是2的幂
lh = n / 2
    J = n / 2
    For I = 1 To n - 2


    Debug.Print I, J
    k = lh '下面是向右进位算法
Do
    If k > J Then Exit Do '高位是1吗
J = J - k '是的,高位置0
    k = k / 2 '准备次高位的权
Loop Until k = 0 '次高位的权若非0,则检查新的次高位
J = J + k '非则若最高位是0,则置1
x_(J + 1) = Format(Val(x_(J + 1)), "0.000000")
    s = s & "/" & x_(J + 1)
    Next
    x_(1) = Format(Val(x_(1)), "0.000000"): x_(1 + sb / 2) = Format(Val(x_(1 + sb / 2)), "0.000000")
    dxcx1 = "/" & x_(1) & "/" & x_(1 + sb / 2) & s
   
    End Function

Public Function MPC1(D1 As String, D2 As String) As String 'jiafa
Dim x, Y '两数长度

If Len(D1) >= Len(D2) Then
D4 = String(Len(D1) - Len(D2), "0") & D2
d3 = D1
Else
D4 = D2
d3 = String(Len(D2) - Len(D1), "0") & D1
End If
x = Len(d3): Y = Len(D4)
Dim a() As Integer, B1() As Integer, C1() As Integer, E1() As Integer
ReDim a(1 To x)
ReDim B1(1 To Y)
ReDim C1(1 To x)
ReDim E1(1 To x)
Dim I, J, C2, CJ, JW
For J = Y To 1 Step -1 'D2
JW = 0 '进位清0
B1(J) = Mid$(D4, J, 1) '每位数
For I = x To 1 Step -1  'D1
   a(I) = Mid$(d3, I, 1) '每位数
   C1(I) = a(I) + B1(I) + JW '计算jia
   JW = C1(I) \ 10
   E1(I) = C1(I) Mod 10
  Next
  Next
  For r = 1 To x
  If JW = 0 Then
  MPC1 = MPC1 & E1(r)
  Else
  jc = jc & E1(r)
  MPC1 = JW & jc
  End If
  Next
  
End Function

2021-03-20 23:55
ysr2857
Rank: 16Rank: 16Rank: 16Rank: 16
等 级:版主
威 望:34
帖 子:809
专家分:77
注 册:2020-2-10
收藏
得分:0 
回复 225楼 ysr2857
51750801837147361345408953922231823615475578427966187002956389087112242842559611794590895524485015222232340190036677951157401229518412775512617768569186939216558814320044037671525512763073762127357272238470370174050144130962253437215369727381909754581075278888137687950749577751967083233227932391898438489520107788418593104216764745143648165875043861634459264809523254076330115365651752264033578829280651927862062277153553168278640509846511729608378923480331705134467105387853440058108864733429085916392927954109944314725590758950098556991513109760871599045355054258610189920009222629391227784118536578933067532162200768112408111142115021110731900107445187734955403922470144187293970602024056652942406064101184615113779243566842311336047149767396006622923831778833173731302325162741660053390002572456069410383734906953419854919650114722834689335022576764661864630532595250136417800041415827379233503655173380741283758557001102498493237113089198106283487003030225058520047964863929279622015825870972146222540614667928697270131499340362072956956518213266361286372027834000838185920579641835952404678850816456467012890793914108776148483471455515695596694573035435841962871983614397882366460940068418989292218104650923374259244879331938925143014431488635252724366437874702141802712286424754174951797598162531093933772708024046029028652425912112434874797404878317364682580259997737809632860143160557722236459697738869857870982308547756781808568834445404196611833859447257611721058384661943492980180884154939581533269700568975940675513953240040220315659784214936947443784598154082110443748171557676558299300252057475022409541083454882202785077569281268346332901357829843950754331120530978456454396022570647840977328115888711408099894489014427119253061839770890965114853246067272044090282103668762164047374624856119676063310166566519499552342907590495696658359542582469176737197423550084705962160477441546453931948920780829433665262356431973422034925001341330921812806939990688094288773216182971976433480031438271163051341645350474631300965486818841553843112688792803367397276204832936049162335586140151875524537720425345701193713093955432559579831822084761702059241698184717469616732582600658006352069963017377661059372648121969448644394344799369193952197519795756182552461838014896498816263546256621347748100920475049252091842372001283217811864786225692344297842649982716736752004086642881662614773154743879410328420184057019873899911520017723788801*
51750801837147361345408953922231823615475578427966187002956389087112242842559611794590895524485015222232340190036677951157401229518412775512617768569186939216558814320044037671525512763073762127357272238470370174050144130962253437215369727381909754581075278888137687950749577751967083233227932391898438489520107788418593104216764745143648165875043861634459264809523254076330115365651752264033578829280651927862062277153553168278640509846511729608378923480331705134467105387853440058108864733429085916392927954109944314725590758950098556991513109760871599045355054258610189920009222629391227784118536578933067532162200768112408111142115021110731900107445187734955403922470144187293970602024056652942406064101184615113779243566842311336047149767396006622923831778833173731302325162741660053390002572456069410383734906953419854919650114722834689335022576764661864630532595250136417800041415827379233503655173380741283758557001102498493237113089198106283487003030225058520047964863929279622015825870972146222540614667928697270131499340362072956956518213266361286372027834000838185920579641835952404678850816456467012890793914108776148483471455515695596694573035435841962871983614397882366460940068418989292218104650923374259244879331938925143014431488635252724366437874702141802712286424754174951797598162531093933772708024046029028652425912112434874797404878317364682580259997737809632860143160557722236459697738869857870982308547756781808568834445404196611833859447257611721058384661943492980180884154939581533269700568975940675513953240040220315659784214936947443784598154082110443748171557676558299300252057475022409541083454882202785077569281268346332901357829843950754331120530978456454396022570647840977328115888711408099894489014427119253061839770890965114853246067272044090282103668762164047374624856119676063310166566519499552342907590495696658359542582469176737197423550084705962160477441546453931948920780829433665262356431973422034925001341330921812806939990688094288773216182971976433480031438271163051341645350474631300965486818841553843112688792803367397276204832936049162335586140151875524537720425345701193713093955432559579831822084761702059241698184717469616732582600658006352069963017377661059372648121969448644394344799369193952197519795756182552461838014896498816263546256621347748100920475049252091842372001283217811864786225692344297842649982716736752004086642881662614773154743879410328420184057019873899911520017723788801=
2678145490787694710138406683675886762424440548647327525594133873038347266950777818028529804877891353347244255046176220880989519574806598935727647635506939520211209794328712328126947740602255036264392628020291100698432900022333877728824270241063030019536831205264726059774673235680796770108334187808344470141093691232926021244583649747591446066921535333854157441330339217364515328375889937313870826987520723914810358707312468857074455945610038118763873992681688857200178452843740327143990247797893489008808544535536081089994800692174759199578596435124153437689121057209523619989593900355037400039597165241729693472001589594642879166693443994939359639600558001937547209387175085119128575833396037478944824322315197771750730768383267287661855880237549141571520374996029107650341071074081501632143441365461865431362023790463469688071768208320226561675630348708531708110373889241713511809029065048200924851629507265095151843687852114948736130517024578482059771284515915597919026074110811882700307150650858080695566672584075215926450360584738705106755945308199980660478183563586945902705730231409948938478910176292179410952310592864745025373902249844607078729230098512959498522851990040833671698873183076996740726479481352429756295966452788332789259316653805673821716832204368483794501474641036177256005810416507649770210480747056764697918800240201155395628561684853684747063434500664449114760179367086926249813006056735202795763742271472136500817313178050955623517148960973128433455798444839070215800699075256371341531892841721456473301085595261371522078416420399702683504171019191363372883472415693921509069484448792009627325245658854979159002549542769741504596589556474585723101403486046952706847309188488390899096649210853675228464611999630360164703837131620319658277117300208326944026347808645954842782309633205645471959842390075986572806483755223497552549948718545978420793425036666212191832327909389117021539426917904222971515424022606157676379417252939026404363841301595348953340657745965591468370831371449860774296757556463049237248472613472436666799615694672489600751763956185893123579218797539971253828850163437053164723845196089466298000486042246621634263064752906475198879616484926366053597071510886820878425907736453843197228282179943365206039514850477377542684361730162273246709577442085159313947668552462343596819299335060863266863059421286080919061657175757802930378698062290163092494909661982639303946271889619023417245433500782685534406291391527022657608608130680134939380126048353657648559735671562230714451258764762350451448379438849319710473631625533527602085050858633346936315115309333355986556546113134787213610042970405680162084678021281774169131725296977361816657904233850711837826724976507876061043779177845550646612327663283839673950405472039432309339110648301347672597370034346896334064135099613033528785924976781865447506814375627647103020761819104412269362847848884053177378762432543285984193091289854949394023586451139393716370633759317698908834326333339634557238526607966375935960004339535161203546369910853171524516945554862019134684985868547068709986010719120259421723270478586992153989283736650948010894951434857207445141886625290777550599700738909777829412358941157674866550887608199469723859806486384262574182811908513849905040209776132986875560077482527819093584150609347560543627976011009349905362597935257895287412087233810106693141683912683308201407373637490835862452911394718399632093441745957478079754723679119343225931665785380948807114301164623717144211285944154289093317610519159281033583963015810556464180819928345256832572962092994993950655913067768151113345566231088759030148164710287289335782462899525700500822021472132532771242198844498579102733028256523810973405350508253183399668290339844052874956694050028526577775764032598023622192221226501334606994447870277619118208162133562541678250491647671042612088902952091163094215645902682086024337098910110924115381788866213335441814530141911754446270296630426675020592640816713810936850961517475097707179713115856513919631998747192606018612535436009162735908155778165736923393260822217415131632296810207091918499370220533980666393617256227781299273913099896641458499949922475383775878771011361417556799406151773618626138749998464514570482965286184387350245762317271666329142667987131139265167425606863654107927682419958167046956962340419295394058625063862272314570914511355913547470055072878835349142049813368019960713974852351833144227544851625677753419141348585495260230041111323576432417502998832485027071744397105338790364666312325483218209150368759120749671419554589928540715813531144241705501211397506662448276056294585639532800634727428900861538486753011006379264618338782036690340859441153926551954112364946638768223012718907190897165613382555036872673785444132692292217184974818914501886689736449912131900762592363447945036085692999163815947845753538999001633767986447907729462453017601有4888位,用时3.351563秒(这是4位一组的算法,速度还可以,还有提升空间)
2021-03-20 23:59
ysr2857
Rank: 16Rank: 16Rank: 16Rank: 16
等 级:版主
威 望:34
帖 子:809
专家分:77
注 册:2020-2-10
收藏
得分:0 
51750801837147361345408953922231823615475578427966187002956389087112242842559611794590895524485015222232340190036677951157401229518412775512617768569186939216558814320044037671525512763073762127357272238470370174050144130962253437215369727381909754581075278888137687950749577751967083233227932391898438489520107788418593104216764745143648165875043861634459264809523254076330115365651752264033578829280651927862062277153553168278640509846511729608378923480331705134467105387853440058108864733429085916392927954109944314725590758950098556991513109760871599045355054258610189920009222629391227784118536578933067532162200768112408111142115021110731900107445187734955403922470144187293970602024056652942406064101184615113779243566842311336047149767396006622923831778833173731302325162741660053390002572456069410383734906953419854919650114722834689335022576764661864630532595250136417800041415827379233503655173380741283758557001102498493237113089198106283487003030225058520047964863929279622015825870972146222540614667928697270131499340362072956956518213266361286372027834000838185920579641835952404678850816456467012890793914108776148483471455515695596694573035435841962871983614397882366460940068418989292218104650923374259244879331938925143014431488635252724366437874702141802712286424754174951797598162531093933772708024046029028652425912112434874797404878317364682580259997737809632860143160557722236459697738869857870982308547756781808568834445404196611833859447257611721058384661943492980180884154939581533269700568975940675513953240040220315659784214936947443784598154082110443748171557676558299300252057475022409541083454882202785077569281268346332901357829843950754331120530978456454396022570647840977328115888711408099894489014427119253061839770890965114853246067272044090282103668762164047374624856119676063310166566519499552342907590495696658359542582469176737197423550084705962160477441546453931948920780829433665262356431973422034925001341330921812806939990688094288773216182971976433480031438271163051341645350474631300965486818841553843112688792803367397276204832936049162335586140151875524537720425345701193713093955432559579831822084761702059241698184717469616732582600658006352069963017377661059372648121969448644394344799369193952197519795756182552461838014896498816263546256621347748100920475049252091842372001283217811864786225692344297842649982716736752004086642881662614773154743879410328420184057019873899911520017723788801*
51750801837147361345408953922231823615475578427966187002956389087112242842559611794590895524485015222232340190036677951157401229518412775512617768569186939216558814320044037671525512763073762127357272238470370174050144130962253437215369727381909754581075278888137687950749577751967083233227932391898438489520107788418593104216764745143648165875043861634459264809523254076330115365651752264033578829280651927862062277153553168278640509846511729608378923480331705134467105387853440058108864733429085916392927954109944314725590758950098556991513109760871599045355054258610189920009222629391227784118536578933067532162200768112408111142115021110731900107445187734955403922470144187293970602024056652942406064101184615113779243566842311336047149767396006622923831778833173731302325162741660053390002572456069410383734906953419854919650114722834689335022576764661864630532595250136417800041415827379233503655173380741283758557001102498493237113089198106283487003030225058520047964863929279622015825870972146222540614667928697270131499340362072956956518213266361286372027834000838185920579641835952404678850816456467012890793914108776148483471455515695596694573035435841962871983614397882366460940068418989292218104650923374259244879331938925143014431488635252724366437874702141802712286424754174951797598162531093933772708024046029028652425912112434874797404878317364682580259997737809632860143160557722236459697738869857870982308547756781808568834445404196611833859447257611721058384661943492980180884154939581533269700568975940675513953240040220315659784214936947443784598154082110443748171557676558299300252057475022409541083454882202785077569281268346332901357829843950754331120530978456454396022570647840977328115888711408099894489014427119253061839770890965114853246067272044090282103668762164047374624856119676063310166566519499552342907590495696658359542582469176737197423550084705962160477441546453931948920780829433665262356431973422034925001341330921812806939990688094288773216182971976433480031438271163051341645350474631300965486818841553843112688792803367397276204832936049162335586140151875524537720425345701193713093955432559579831822084761702059241698184717469616732582600658006352069963017377661059372648121969448644394344799369193952197519795756182552461838014896498816263546256621347748100920475049252091842372001283217811864786225692344297842649982716736752004086642881662614773154743879410328420184057019873899911520017723788801=
2678145490787694710138406683675886762424440548647327525594133873038347266950777818028529804877891353347244255046176220880989519574806598935727647635506939520211209794328712328126947740602255036264392628020291100698432900022333877728824270241063030019536831205264726059774673235680796770108334187808344470141093691232926021244583649747591446066921535333854157441330339217364515328375889937313870826987520723914810358707312468857074455945610038118763873992681688857200178452843740327143990247797893489008808544535536081089994800692174759199578596435124153437689121057209523619989593900355037400039597165241729693472001589594642879166693443994939359639600558001937547209387175085119128575833396037478944824322315197771750730768383267287661855880237549141571520374996029107650341071074081501632143441365461865431362023790463469688071768208320226561675630348708531708110373889241713511809029065048200924851629507265095151843687852114948736130517024578482059771284515915597919026074110811882700307150650858080695566672584075215926450360584738705106755945308199980660478183563586945902705730231409948938478910176292179410952310592864745025373902249844607078729230098512959498522851990040833671698873183076996740726479481352429756295966452788332789259316653805673821716832204368483794501474641036177256005810416507649770210480747056764697918800240201155395628561684853684747063434500664449114760179367086926249813006056735202795763742271472136500817313178050955623517148960973128433455798444839070215800699075256371341531892841721456473301085595261371522078416420399702683504171019191363372883472415693921509069484448792009627325245658854979159002549542769741504596589556474585723101403486046952706847309188488390899096649210853675228464611999630360164703837131620319658277117300208326944026347808645954842782309633205645471959842390075986572806483755223497552549948718545978420793425036666212191832327909389117021539426917904222971515424022606157676379417252939026404363841301595348953340657745965591468370831371449860774296757556463049237248472613472436666799615694672489600751763956185893123579218797539971253828850163437053164723845196089466298000486042246621634263064752906475198879616484926366053597071510886820878425907736453843197228282179943365206039514850477377542684361730162273246709577442085159313947668552462343596819299335060863266863059421286080919061657175757802930378698062290163092494909661982639303946271889619023417245433500782685534406291391527022657608608130680134939380126048353657648559735671562230714451258764762350451448379438849319710473631625533527602085050858633346936315115309333355986556546113134787213610042970405680162084678021281774169131725296977361816657904233850711837826724976507876061043779177845550646612327663283839673950405472039432309339110648301347672597370034346896334064135099613033528785924976781865447506814375627647103020761819104412269362847848884053177378762432543285984193091289854949394023586451139393716370633759317698908834326333339634557238526607966375935960004339535161203546369910853171524516945554862019134684985868547068709986010719120259421723270478586992153989283736650948010894951434857207445141886625290777550599700738909777829412358941157674866550887608199469723859806486384262574182811908513849905040209776132986875560077482527819093584150609347560543627976011009349905362597935257895287412087233810106693141683912683308201407373637490835862452911394718399632093441745957478079754723679119343225931665785380948807114301164623717144211285944154289093317610519159281033583963015810556464180819928345256832572962092994993950655913067768151113345566231088759030148164710287289335782462899525700500822021472132532771242198844498579102733028256523810973405350508253183399668290339844052874956694050028526577775764032598023622192221226501334606994447870277619118208162133562541678250491647671042612088902952091163094215645902682086024337098910110924115381788866213335441814530141911754446270296630426675020592640816713810936850961517475097707179713115856513919631998747192606018612535436009162735908155778165736923393260822217415131632296810207091918499370220533980666393617256227781299273913099896641458499949922475383775878771011361417556799406151773618626138749998464514570482965286184387350245762317271666329142667987131139265167425606863654107927682419958167046956962340419295394058625063862272314570914511355913547470055072878835349142049813368019960713974852351833144227544851625677753419141348585495260230041111323576432417502998832485027071744397105338790364666312325483218209150368759120749671419554589928540715813531144241705501211397506662448276056294585639532800634727428900861538486753011006379264618338782036690340859441153926551954112364946638768223012718907190897165613382555036872673785444132692292217184974818914501886689736449912131900762592363447945036085692999163815947845753538999001633767986447907729462453017601有4888位,用时3.695313秒(优化了一下程序,这是3位一组的算法,就是把3位数当做一位数,结果是可靠的,速度没有变,就是去掉了末尾的调用大数加法程序,不用大数加法程序直接加的,看来去掉大数加法也没有影响)
2021-03-21 20:36
ysr2857
Rank: 16Rank: 16Rank: 16Rank: 16
等 级:版主
威 望:34
帖 子:809
专家分:77
注 册:2020-2-10
收藏
得分:0 
下面就是优化后的程序,这是3位一组的算法,就是把3位数当做一位数,结果是可靠的,速度没有变,要想提高速度,看来可以分段计算,比如50位一组,就是把50位的数当做一位数,这样就快了好像,还要结合大数的加减和乘法(模仿手工的乘法),明天试验一下吧,看看行不行,速度能否提高?
下面把这个优化的3位一组的程序发一下:

Dim l As Long, le As Long, le1 As Long, n As Long, r As Long, p As Long, q As Long, m As Byte
  Dim wr As Double, w1 As Double, wlr As Double, wl1 As Double, tr As Double, t1 As Double
  Dim pi As Double, t As Double, tr1 As Double

Private Sub Command1_Click()
  Dim xr() As Double, a As String
  a = Trim(Text1)
  b = Trim(Text3)
  ts = Timer
  
  x = Len(a) \ 3: Y = Len(b) \ 3
  If Val(3 * x) = Len(a) Then
  a = a
  ElseIf Val(3 * Y) = Len(b) Then
  b = b
  Else
  a = String(Val(x * 3 + 3 - Len(a)), "0") & a
  b = String(Val(Y * 3 + 3 - Len(b)), "0") & b
  x = x + 1: Y = Y + 1
  End If
  sb1 = x + Y
  sb2 = Log(sb1) / Log(2)
  If InStr(sb2, ".") = 0 Then
  sb2 = sb2
  Else
  sb2 = Int(sb2) + 1
  End If
  sb = 2 ^ sb2
  Print sb
  a = String(Val(sb) * 3 - Len(a), "0") & a
  b = String(Val(sb) * 3 - Len(b), "0") & b
  Print a
  
  
  
   ReDim x_(1 To sb): ReDim y_(1 To sb)
    For i1 = 1 To sb
    x_(i1) = Mid(a, (sb - i1 + 1) * 3 - 2, 3): y_(i1) = Mid(b, (sb - i1 + 1) * 3 - 2, 3)
    If Len(x_(i1)) < 3 Then
    x_(i1) = String(3 - Len(x_(i1)), "0") & x_(i1)
    ElseIf Len(y_(i1)) < 3 Then
    y_(i1) = String(3 - Len(y_(i1)), "0") & y_(i1)
    Else
    x_(i1) = x_(i1): y_(i1) = y_(i1)
    End If
   
      Next
    Dim n As Integer, I As Long, J As Long, mn As Long, lh As Long, t As Double, k As Long
    '位序倒置
n = sb '求数组大小,其值必须是2的幂
lh = n / 2
    J = n / 2
    For I = 1 To n - 2


    Debug.Print I, J
    k = lh '下面是向右进位算法
Do
    If k > J Then Exit Do '高位是1吗
J = J - k '是的,高位置0
    k = k / 2 '准备次高位的权
Loop Until k = 0 '次高位的权若非0,则检查新的次高位
J = J + k '非则若最高位是0,则置1
    s = s & x_(J + 1)
    s1 = s1 & y_(J + 1)
    Next
    a = x_(1) & x_(1 + sb / 2) & s
    b = y_(1) & y_(1 + sb / 2) & s1
  
  ReDim xr(0 To (Len(a) - 3) \ 3): ReDim yr(0 To (Len(b) - 3) \ 3): ReDim zr(0 To (Len(b) - 3) \ 3)
  If Len(a) = 3 Then
  xr(0) = a: yr(0) = b
  Else
  For i1 = 0 To (Len(a) - 3) \ 3
  xr(i1) = Mid(a, (i1 + 1) * 3 - 2, 3)
  yr(i1) = Mid(b, (i1 + 1) * 3 - 2, 3)

     Next
     End If
  
  Dim xi(): Dim yi(): Dim zi()
  n = sb '求数组大小,其值必须是2的幂
m = 0
  l = 2
  pi = 3.14159265358979
  Do
  l = l + l
  m = m + 1
  Loop Until l > n
  n = l / 2
  ReDim xi(n - 1): ReDim yi(n - 1): ReDim zi(n - 1)

  l = 1
  Do
    le = 2 ^ l
    le1 = le / 2
    wr = 1
    wi = 0
    If l = 1 Then
    t = 0
    Else
    t = pi / le1
    End If
    w1r = Cos(t)
    w1i = -Sin(t)
    r = 0
  Do
    p = r
    Do
     q = p + le1
     
     tr = xr(q) * wr - xi(q) * wi
     ti = xr(q) * wi + xi(q) * wr
     tr1 = yr(q) * wr - yi(q) * wi
     ti1 = yr(q) * wi + yi(q) * wr
     
     
     xr(q) = xr(p) - tr
     xi(q) = xi(p) - ti
     xr(p) = xr(p) + tr
     xi(p) = xi(p) + ti
     
       yr(q) = yr(p) - tr1
      yi(q) = yi(p) - ti1
      yr(p) = yr(p) + tr1
      yi(p) = yi(p) + ti1
     xr(p) = Format(Val(xr(p)), "0.000000"): xi(p) = Format(Val(xi(p)), "0.000000")
     yr(p) = Format(Val(yr(p)), "0.000000"): yi(p) = Format(Val(yi(p)), "0.000000")
     
      p = p + le
  Loop Until p > n - 1


  wr2 = wr * w1r - wi * w1i
  wi2 = wr * w1i + wi * w1r
  wr = wr2
  wi = wi2
  r = r + 1
  Loop Until r > le1 - 1
  l = l + 1
  Loop Until l > m

  For I = 0 To n - 1 '仅输出模
   zr(I) = xr(I) * yr(I) - xi(I) * yi(I): zi(I) = xr(I) * yi(I) + xi(I) * yr(I)
    zr(I) = Format(Val(zr(I)), "0.000000"): zi(I) = Format(Val(zi(I)), "0.000000")
  

      's = s & "/" & zr(I)
      's1 = s1 & "/" & zi(I)
      Next
      
       J = sb
     
       ReDim x_(1 To sb): ReDim y_(1 To sb)
     For k = 1 To J
         n1 = n1 + 1
          ReDim Preserve x_(1 To n1)
        
         x_(n1) = zr(n1 - 1): y_(n1) = zi(n1 - 1)
         x_(n1) = Format(Val(x_(n1)), "0.000000"): y_(n1) = Format(Val(y_(n1)), "0.000000")
         
       Next
   
    '位序倒置
n = sb '求数组大小,其值必须是2的幂
lh = n / 2
    J = n / 2
    For I = 1 To n - 2


    Debug.Print I, J
    k = lh '下面是向右进位算法
Do
    If k > J Then Exit Do '高位是1吗
J = J - k '是的,高位置0
    k = k / 2 '准备次高位的权
Loop Until k = 0 '次高位的权若非0,则检查新的次高位
J = J + k '非则若最高位是0,则置1
x_(J + 1) = Format(Val(x_(J + 1)), "0.000000")
y_(J + 1) = Format(Val(y_(J + 1)), "0.000000")
    js = js & "/" & x_(J + 1)
    js1 = js1 & "/" & y_(J + 1)
    Next
    sx1 = "/" & x_(1) & "/" & x_(1 + sb / 2) & js
    sy1 = "/" & y_(1) & "/" & y_(1 + sb / 2) & js1
   
   
   
   
   
      
      
     's2 = nifft(dxcx1(Trim(s)), dxcx1(Trim(s1)), Trim(sb1))
     s3 = nifft(Trim(sx1), Trim(sy1), Trim(sb1))
      Text2 = s3 & "有" & Len(s3) & "位,用时" & Timer - ts & "秒"
  End Sub

  Private Sub Command2_Click()
  Text1 = ""
  Text2 = ""
  Text3 = ""
  Form1.Cls
  End Sub

Private Function qdqd0(sa As String) As String
  a = sa
  Do While Left(a, 1) = "0"
  a = Mid(a, 2)
  Loop
  If a = "" Then
  a = 0
  Else
  a = a
  End If
  qdqd0 = a
  End Function

  Private Function nifft(sa As String, sb As String, sb1 As String) As String
  
  Dim xi(): Dim yi(): Dim zi()
  Dim xr(), yr()
  Dim zr() As String
  
  s2 = Split(sa, "/")
  s3 = Split(sb, "/")
      J = UBound(s2)
      n = J
     For k = 1 To J
         n1 = n1 + 1
          ReDim Preserve xr(0 To n1 - 1)
          ReDim Preserve yr(0 To n1 - 1)
         xr(n1 - 1) = s2(n1): yr(n1 - 1) = s3(n1)
         xr(n1 - 1) = Format(Val(xr(n1 - 1)), "0.000000"): yr(n1 - 1) = Format(Val(yr(n1 - 1)), "0.000000")

       Next
     

  ReDim zr(0 To J - 1)

  m = 0
  l = 2
  pi = 3.14159265358979
  Do
  l = l + l
  m = m + 1
  Loop Until l > n
  n = l / 2
  ReDim xi(n - 1): ReDim yi(n - 1): ReDim zi(n - 1)

  l = 1
  Do
    le = 2 ^ l
    le1 = le / 2
    wr = 1
    wi = 0
    If l = 1 Then
    t = 0
    Else
    t = -1 * pi / le1
    End If
    w1r = Cos(t)
    w1i = -Sin(t)
    r = 0
  Do
    p = r
    Do
     q = p + le1
     
     tr = xr(q) * wr - xi(q) * wi
     ti = xr(q) * wi + xi(q) * wr
     tr1 = yr(q) * wr - yi(q) * wi
     ti1 = yr(q) * wi + yi(q) * wr
     
     
     xr(q) = xr(p) - tr
     xi(q) = xi(p) - ti
     xr(p) = xr(p) + tr
     xi(p) = xi(p) + ti
     
       yr(q) = yr(p) - tr1
      yi(q) = yi(p) - ti1
      yr(p) = yr(p) + tr1
      yi(p) = yi(p) + ti1
     xr(p) = Format(Val(xr(p)), "0.000000"): xi(p) = Format(Val(xi(p)), "0.000000")
     yr(p) = Format(Val(yr(p)), "0.000000"): yi(p) = Format(Val(yi(p)), "0.000000")
      p = p + le
  Loop Until p > n - 1


  wr2 = wr * w1r - wi * w1i
  wi2 = wr * w1i + wi * w1r
  wr = wr2
  wi = wi2
  r = r + 1
  Loop Until r > le1 - 1
  l = l + 1
  Loop Until l > m

  For I = 0 To n - 1 '仅输出模
zr(I) = (xr(I) - yi(I)) / n
      zr(I) = Format(Val(zr(I) + 0.5), "0.000000")
     If InStr(zr(I), ".") = 0 Then
     s1 = zr(I)
     Else
     s1 = Left(zr(I), InStr(zr(I), ".") - 1)
      End If
      s = "/" & s1 & s
      zr(I) = s1
      Next
      For i1 = 1 To Val(J - sb1 + 1)
      zr(sb1 + i1 - 2) = 0
      Next
      
     
     
      For i1 = 0 To n - 1
      If zr(i1) < 0 Then
      zr(i1) = "000"
      ElseIf Len(zr(i1)) < 3 Then
      zr(i1) = String(3 - Len(zr(i1)), "0") & zr(i1)
      Else
      zr(i1) = zr(i1)
      End If
      
      s5 = s5 & "/" & zr(i1)
      
      If i1 = 0 Then
      
      s6 = Val(Left(zr(i1), Len(zr(i1)) - 3))
      If Len(s6) < 3 Then
      s6 = String(3 - Len(s6), "0") & s6
      Else
      s6 = s6
      End If
      s8 = Right(zr(i1), 3)
      ElseIf Val(zr(i1)) >= 0 Then
      s7 = Val(zr(i1)) + Val(s6)
         If Len(s7) = 3 Or Len(s7) = 6 Or Len(s7) = 9 Then
          s7 = s7
          Else
          s7 = String(9 - Len(s7), "0") & s7
         End If
      s10 = Right(s7, 3)
      s11 = s10 & s11
      If Len(s7) < 3 Then
      s7 = String(3 - Len(s7), "0") & s7
      ElseIf Len(s7) = 3 Then
      s6 = "000"
      Else
      s7 = s7
      s6 = Val(Left(s7, Len(s7) - 3))
      End If
      Else
      s6 = s6
      End If
     
      Next
      s9 = s6 & s11 & s8
     
  nifft = qdqd0(Trim(s9))

  End Function

  Private Function dxcx0(sa As String, sb As String) As String

  Dim x_() As Double, a As String
    a = Trim(sa)
    ReDim x_(1 To sb)
    For i1 = 1 To sb
    x_(i1) = Mid(a, sb - i1 + 1, 1)
      Next
    Dim n As Integer, I As Long, J As Long, mn As Long, lh As Long, t As Double, k As Long
    '位序倒置
n = sb '求数组大小,其值必须是2的幂
lh = n / 2
    J = n / 2
    For I = 1 To n - 2


    Debug.Print I, J
    k = lh '下面是向右进位算法
Do
    If k > J Then Exit Do '高位是1吗
J = J - k '是的,高位置0
    k = k / 2 '准备次高位的权
Loop Until k = 0 '次高位的权若非0,则检查新的次高位
J = J + k '非则若最高位是0,则置1
    s = s & x_(J + 1)
    Next
    dxcx0 = x_(1) & x_(1 + sb / 2) & s
   

  End Function

Public Function MbC(D1 As String, D2 As String) As String '乘法
Dim x, Y '两数长度
x = Len(D1): Y = Len(D2)
Dim a() As Integer
ReDim a(1 To x + Y, 1 To Y)
Dim I, J, C1, C2, CJ, JW
For J = Y To 1 Step -1 'D2
JW = 0 '进位清0
C2 = Mid$(D2, J, 1) '每位数
For I = x To 1 Step -1 'D1
  C1 = Mid$(D1, I, 1) '每位数
  CJ = C1 * C2 + JW '计算乘积
  c = I + J: r = Y + 1 - J
  a(c, r) = CJ Mod 10 '本位
  JW = CJ \ 10 '进位
Next
a(c - 1, r) = JW
Next
Dim b() As Integer
ReDim b(1 To x + Y)
JW = 0
For I = x + Y To 1 Step -1
Bit = JW
For J = 1 To Y
  Bit = Bit + a(I, J)
Next
b(I) = Bit Mod 10
JW = Bit \ 10
Next
If b(1) > 0 Then
MbC = MbC & b(1)
Else
MbC = MbC
End If
For I = 2 To x + Y
MbC = MbC & b(I)
Next
End Function

  Private Function dxcx1(sa As String) As String

  Dim x_() As Double, a As String
    a = Trim(sa)
     

  s2 = Split(sa, "/")
  s3 = Split(sb, "/")
      J = UBound(s2)
      sb = J
     
       ReDim x_(1 To sb)
     For k = 1 To J
         n1 = n1 + 1
          ReDim Preserve x_(1 To n1)
        
         x_(n1) = s2(n1)
       Next
    Dim n As Integer, I As Long, mn As Long, lh As Long, t As Double
    '位序倒置
n = sb '求数组大小,其值必须是2的幂
lh = n / 2
    J = n / 2
    For I = 1 To n - 2


    Debug.Print I, J
    k = lh '下面是向右进位算法
Do
    If k > J Then Exit Do '高位是1吗
J = J - k '是的,高位置0
    k = k / 2 '准备次高位的权
Loop Until k = 0 '次高位的权若非0,则检查新的次高位
J = J + k '非则若最高位是0,则置1
    s = s & "/" & x_(J + 1)
    Next
    dxcx1 = "/" & x_(1) & "/" & x_(1 + sb / 2) & s
   
    End Function


2021-03-21 20:43
ysr2857
Rank: 16Rank: 16Rank: 16Rank: 16
等 级:版主
威 望:34
帖 子:809
专家分:77
注 册:2020-2-10
收藏
得分:0 
可能会用到如下可调用程序(谁知道加上这么多辅助程序是否会影响速度,当然有的可能就用不上,有的是不必要,尽量不用,移动小数点是必须的)
发出来,明天再弄吧,做个50位一组的验证一下,各位老师晚安!发一下程序:
'移动小数点的程序
Private Function ydxsd(sa As String, sd As String) As String
 If Len(sa) = 1 And Val(sa) = 0 Then
  ydxsd = 0
  Else
  
    sc = InStr(sa, ".")
    If Val(sc) = 0 Then
    ydxsd = sa & String(sd, "0")
    Else
    se = Left(sa, Val(sc) - 1)
    sf = Right(sa, Len(sa) - Val(sc))
    If Val(Len(sf)) >= Val(sd) Then
    ydxsd = se & Mid(sf, 1, sd)
      Else
      ydxsd = se & sf & String(Val(sd) - Len(sf), "0")
      End If
      End If
      End If
      End Function

'符号运算程序
Private Function fhys(sa As String) As String

 If InStr(sa, "-") = 0 Then
  fhys = 1
   Else
   fhys = -1
 End If
 
   
End Function

'添加符号程序
Private Function tjfh(sa As String, sf As String) As String 'qianjia fuhao
If Val(sf) < 0 Then
tjfh = "-" & sa
Else
tjfh = sa
End If

 
 
   
End Function

'带符号的加法程序
Private Function mpc3(sa As String, sb As String) As String 'jiafa jingdu daifh
Dim ja
fh1 = fhys(sa)
fh2 = fhys(sb)
If Val(fh1) * Val(fh2) > 0 Then
ja = MPC1(qdfh(sa), qdfh(sb))


If Val(fh1) > 0 Then
mpc3 = ja
Else
mpc3 = "-" & ja
End If
Else
xd = MBJC(qdfh(sa), qdfh(sb))
If xd >= 0 Then
jb = qqdl(MPC(qdfh(sa), qdfh(sb)))
Else
jb = qqdl(MPC(qdfh(sb), qdfh(sa)))
End If
If xd >= 0 And Val(fh1) > 0 Then
mpc3 = jb
Else
 If xd > 0 And Val(fh1) < 0 Then
 mpc3 = "-" & jb
 Else
 If Val(fh2) < 0 Then
 mpc3 = "-" & jb
 Else
 mpc3 = jb
 End If
 End If
 End If
 End If
 
End Function

'带符号的减法程序
Private Function mpc2(sa As String, sb As String) As String 'jianfa jingdu daifh
Dim ja
fh1 = fhys(sa)
fh2 = fhys(sb)
xd = MBJC(qqdl(qdfh(sa)), qqdl(qdfh(sb)))
If Val(fh1) * Val(fh2) < 0 Then
ja = MPC1(qdfh(sa), qdfh(sb))


If Val(fh1) > 0 Then
mpc2 = ja
Else

mpc2 = "-" & ja


End If
Else

If xd >= 0 Then
jb = qqdl(MPC(qdfh(sa), qdfh(sb)))
Else
jb = qqdl(MPC(qdfh(sb), qdfh(sa)))
End If
If xd >= 0 And Val(fh1) > 0 Then
mpc2 = jb
Else
 If xd > 0 And Val(fh1) < 0 Then
 mpc2 = "-" & jb
 Else
 If Val(fh2) <= 0 Then
 mpc2 = jb
 Else
 mpc2 = "-" & jb
 End If
 End If
 End If
 End If
 
End Function

'去前导0的程序
Private Function qqdl(sa As String) As String

  
  For i = 1 To Len(sa)
    If Not Mid(sa, i, 1) = "0" Then
        Exit For
    End If
Next
strTmp = Mid(sa, i)
  If Len(strTmp) = 0 Then
  qqdl = "0"
  Else
qqdl = strTmp
 End If
End Function

'带符号的比较大小程序
Private Function mbjc2(sa As String, sb As String) As String 'bi jiao dx daifh
Dim ja
fh1 = fhys(sa)
fh2 = fhys(sb)
If Val(fh1) < Val(fh2) Then
mbjc2 = -1
Else
If Val(fh1) > Val(fh2) Then
mbjc2 = 1
Else

ja = MBJC(qdfh(sa), qdfh(sb))

If Val(fh1) > 0 And Val(ja) > 0 Then
mbjc2 = 1
Else
If Val(fh1) < 0 And Val(ja) > 0 Then
mbjc2 = -1
Else
If Val(fh1) > 0 And Val(ja) < 0 Then
mbjc2 = -1
Else
If Val(fh1) < 0 And Val(ja) < 0 Then
mbjc2 = 1
Else
mbjc2 = 0
End If
End If
End If
End If
End If
End If


 
End Function

'带符号的乘法程序
Private Function mbc2(sa As String, sb As String, sd As String) As String 'chengfa jingdu daifh
Dim ja
fh1 = fhys(sa)
fh2 = fhys(sb)
If sa = 0 Or sb = 0 Then
mbc2 = 0
Else


ja = MbC(qdfh(sa), qdfh(sb))
If Val(Len(ja)) > Val(sd) Then
jb = Left(ja, Val(Len(ja)) - Val(sd))

If Val(fh1) * Val(fh2) > 0 Then
mbc2 = jb
Else
mbc2 = "-" & jb
End If

Else
mbc2 = 0
End If
End If



 
End Function

'去掉符号的程序
Private Function qdfh(sa As String) As String

 If InStr(sa, "-") > 0 Then
 qdfh = Mid(sa, 2)
 Else
 If InStr(sa, "+") > 0 Then
 qdfh = Mid(sa, 2)
 Else
 qdfh = sa
 End If
 End If
   
End Function

'减法程序(必须大的减去小的不输出负值):(这个收集进来这回就全了,可以组装起来成为快速程序了)
 Public Function MPC(D1 As String, D2 As String) As String ';jianfaqi
Dim x, Y ';两数长度
If Len(D1) >= Len(D2) Then
D4 = String(Len(D1) - Len(D2), "0") & D2
d3 = D1
Else
D4 = D2
d3 = String(Len(D2) - Len(D1), "0") & D1
End If
x = Len(d3): Y = Len(D4)
Dim a() As Integer, B1() As Integer, C1() As Integer, E1() As Integer
ReDim a(1 To x)
ReDim B1(1 To Y)
ReDim C1(1 To x)
ReDim E1(1 To x)
Dim I, J, C2, CJ, JW
For J = Y To 1 Step -1 ';D2
JW = 1 ';yu jie weichuzhi
B1(J) = Mid(D4, J, 1) ';每位数
For I = x To 1 Step -1  ';D1
   a(I) = Mid(d3, I, 1) ';每位数
   C1(I) = 10 + a(I) - B1(I) - 1 + JW ';计算jia
   JW = C1(I) \ 10
   E1(I) = C1(I) Mod 10
  Next
  Next
  For r = 1 To x
  MPC = MPC & E1(r)
  For I = 1 To Len(MPC)
    If Not Mid(MPC, I, 1) = "0" Then
        Exit For
    End If
Next
strtmp = Mid(MPC, I)
  If Len(strtmp) = 0 Then
  MPC = "0"
  Else
MPC = strtmp
End If
  Next
  
  
End Function

'比较大小的程序
Public Function MBJC(D1 As String, D2 As String) As String 'bijiao
If Len(D1) > Len(D2) Then
MBJC = 1
Else
If Len(D1) < Len(D2) Then
MBJC = -1
Else
If Len(D1) = Len(D2) And Len(D1) >= 10 Then

 
Dim X, Y
X = Len(D1) \ 4: Y = Len(D2) \ 4
Dim a() As String, b() As String
ReDim a(4 To 4 * X + 4)
ReDim b(4 To 4 * Y + 4)
If Val(Left(D1, Len(D1) - 4 * X)) > Val(Left(D2, Len(D2) - 4 * Y)) Then
 MBJC = 1
 Else
 If Val(Left(D1, Len(D1) - 4 * X)) < Val(Left(D2, Len(D2) - 4 * Y)) Then
 MBJC = -1
 Else
 For i = 4 To 4 * X Step 4
 a(i) = Mid(D1, Len(D1) - i + 1, 4)
 b(i) = Mid(D2, Len(D2) - i + 1, 4)
 Next
 j = 4 * X
 Do While a(j) = b(j) And j >= 8
 
 j = j - 4
    Loop
   
   
  If Val(a(j)) - Val(b(j)) > 0 Then
  MBJC = 1
  Else
  If Val(a(j)) - Val(b(j)) < 0 Then
  MBJC = -1
  Else
  MBJC = 0
  End If
  
 End If
 
 
 
 
End If
End If
End If
If Len(D1) < 10 Then
 ja = Val(D1) - Val(D2)
  If ja > 0 Then
   MBJC = 1
   Else
    If ja = 0 Then
     MBJC = 0
    Else
   
  MBJC = -1
 End If
 End If
 End If
 
End If
End If
End Function

[此贴子已经被作者于2021-3-22 09:05编辑过]

2021-03-21 21:20
快速回复:各位老师好!求助编辑一个大整数的快速乘除法可调用程序
数据加载中...
 
   



关于我们 | 广告合作 | 编程中国 | 清除Cookies | TOP | 手机版

编程中国 版权所有,并保留所有权利。
Powered by Discuz, Processed in 0.055580 second(s), 8 queries.
Copyright©2004-2024, BCCN.NET, All Rights Reserved