搜集最优秀的 树 和 二叉树 的相关代码。/
昨天买了一本 数据结构的书, 徐孝凯写的, 那代码比 严蔚敏写的还悲剧,40 RMB 打水漂了。
#include<stdio.h> /* EOF(=^Z或F6),NULL */ #include<math.h> /* floor(),ceil(),abs() */ #define OK 1 #define ERROR 0 #define TRUE 1 #define FALSE 0 typedef int Status; /* Status是函数的类型,其值是函数结果状态代码,如OK等 */ #if CHAR typedef char TElemType; TElemType Nil=' '; /* 设字符型以空格符为空 */ #else typedef int TElemType; TElemType Nil=0; /* 设整型以0为空 */ #endif #define MAX_TREE_SIZE 100 /* 二叉树的最大结点数 */ typedef TElemType SqBiTree[MAX_TREE_SIZE]; /* 0号单元存储根结点 */ Status InitBiTree(SqBiTree T) { /* 构造空二叉树T。因为T是固定数组,不会改变,故不需要& */ int i; for(i=0;i<MAX_TREE_SIZE;i++) T[i]=Nil; /* 初值为空 */ return OK; } Status CreateBiTree(SqBiTree T) { /* 按层序次序输入二叉树中结点的值(字符型或整型), 构造顺序存储的二叉树T */ int i=0; #if CHAR int l; char s[MAX_TREE_SIZE]; printf("请按层序输入结点的值(字符),空格表示空结点,结点数≤%d:\n",MAX_TREE_SIZE); gets(s); /* 输入字符串 */ l=strlen(s); /* 求字符串的长度 */ for(;i<l;i++) /* 将字符串赋值给T */ { T[i]=s[i]; if(i!=0&&T[(i+1)/2-1]==Nil&&T[i]!=Nil) /* 此结点(不空)无双亲且不是根 */ { printf("出现无双亲的非根结点%c\n",T[i]); exit(ERROR); } } for(i=l;i<MAX_TREE_SIZE;i++) /* 将空赋值给T的后面的结点 */ T[i]=Nil; #else printf("请按层序输入结点的值(整型),0表示空结点,输999结束。结点数≤%d:\n",MAX_TREE_SIZE); while(1) { scanf("%d",&T[i]); if(T[i]==999) break; if(i!=0&&T[(i+1)/2-1]==Nil&&T[i]!=Nil) /* 此结点(不空)无双亲且不是根 */ { printf("出现无双亲的非根结点%d\n",T[i]); exit(ERROR); } i++; } while(i<MAX_TREE_SIZE) { T[i]=Nil; /* 将空赋值给T的后面的结点 */ i++; } #endif return OK; } Status BiTreeEmpty(SqBiTree T) { /* 初始条件: 二叉树T存在 */ /* 操作结果: 若T为空二叉树,则返回TRUE,否则FALSE */ if(T[0]==Nil) /* 根结点为空,则树空 */ return TRUE; else return FALSE; } int BiTreeDepth(SqBiTree T) { /* 初始条件: 二叉树T存在。操作结果: 返回T的深度 */ int i,j=-1; for(i=MAX_TREE_SIZE-1;i>=0;i--) /* 找到最后一个结点 */ if(T[i]!=Nil) break; i++; /* 为了便于计算 */ do j++; while(i>=pow(2,j)); return j; } Status Root(SqBiTree T,TElemType *e) { /* 初始条件: 二叉树T存在 */ /* 操作结果: 当T不空,用e返回T的根,返回OK;否则返回ERROR,e无定义 */ if(BiTreeEmpty(T)) /* T空 */ return ERROR; else { *e=T[0]; return OK; } } void main() { Status i; TElemType e; SqBiTree T; InitBiTree(T); CreateBiTree(T); printf("建立二叉树后,树空否?%d(1:是 0:否) 树的深度=%d\n",BiTreeEmpty(T),BiTreeDepth(T)); i=Root(T,&e); if(i) printf("二叉树的根为:%d\n",e); else printf("树空,无根\n"); }
#define CHAR /* 字符型 */ #include<stdio.h> /* EOF(=^Z或F6),NULL */ #include<math.h> /* floor(),ceil(),abs() */ #define TRUE 1 #define FALSE 0 #define OK 1 typedef int Status; /* Status是函数的类型,其值是函数结果状态代码,如OK等 */ #ifdef CHAR typedef char TElemType; TElemType Nil=' '; /* 字符型以空格符为空 */ #endif #ifdef INT typedef int TElemType; TElemType Nil=0; /* 整型以0为空 */ #endif typedef struct BiTNode { TElemType data; struct BiTNode *lchild,*rchild; /* 左右孩子指针 */ }BiTNode,*BiTree; Status InitBiTree(BiTree *T) { /* 操作结果: 构造空二叉树T */ *T=NULL; return OK; } void CreateBiTree(BiTree *T) { TElemType ch; #ifdef CHAR scanf("%c",&ch); #endif #ifdef INT scanf("%d",&ch); #endif if(ch==Nil) /* 空 */ *T=NULL; else { *T=(BiTree)malloc(sizeof(BiTNode)); if(!*T) exit(OVERFLOW); (*T)->data=ch; /* 生成根结点 */ CreateBiTree(&(*T)->lchild); /* 构造左子树 */ CreateBiTree(&(*T)->rchild); /* 构造右子树 */ } } Status BiTreeEmpty(BiTree T) { /* 初始条件: 二叉树T存在 */ /* 操作结果: 若T为空二叉树,则返回TRUE,否则FALSE */ if(T) return FALSE; else return TRUE; } int BiTreeDepth(BiTree T) { /* 初始条件: 二叉树T存在。操作结果: 返回T的深度 */ int i,j; if(!T) return 0; if(T->lchild) i=BiTreeDepth(T->lchild); else i=0; if(T->rchild) j=BiTreeDepth(T->rchild); else j=0; return i>j?i+1:j+1; } TElemType Root(BiTree T) { /* 初始条件: 二叉树T存在。操作结果: 返回T的根 */ if(BiTreeEmpty(T)) return Nil; else return T->data; } void main() { BiTree T; TElemType e1; InitBiTree(&T); printf("构造空二叉树后,树空否?%d(1:是 0:否) 树的深度=%d\n",BiTreeEmpty(T),BiTreeDepth(T)); e1=Root(T); if(e1!=Nil) #ifdef CHAR printf("二叉树的根为: %c\n",e1); #endif #ifdef INT printf("二叉树的根为: %d\n",e1); #endif else printf("树空,无根\n"); #ifdef CHAR printf("请先序输入二叉树(如:ab三个空格表示a为根结点,b为左子树的二叉树)\n"); #endif #ifdef INT printf("请先序输入二叉树(如:1 2 0 0 0表示1为根结点,2为左子树的二叉树)\n"); #endif CreateBiTree(&T); printf("建立二叉树后,树空否?%d(1:是 0:否) 树的深度=%d\n",BiTreeEmpty(T),BiTreeDepth(T)); e1=Root(T); if(e1!=Nil) #ifdef CHAR printf("二叉树的根为: %c\n",e1); #endif #ifdef INT printf("二叉树的根为: %d\n",e1); #endif else printf("树空,无根\n"); }