| 网站首页 | 业界新闻 | 小组 | 威客 | 人才 | 下载频道 | 博客 | 代码贴 | 在线编程 | 编程论坛
欢迎加入我们,一同切磋技术
用户名:   
 
密 码:  
共有 632 人关注过本帖
标题:C#编的线索二叉树错在哪里?望高手指点迷津!
只看楼主 加入收藏
边城迷途
Rank: 1
等 级:新手上路
帖 子:5
专家分:0
注 册:2010-5-11
结帖率:100%
收藏
已结贴  问题点数:20 回复次数:5 
C#编的线索二叉树错在哪里?望高手指点迷津!
删除节点(既有左孩子又有右孩子并且右孩子为叶节点)存在问题。如依次输入6、2、8,删除6,结果却显示2,本应该是2、8。自己找不出代码漏洞,向高手求教。
程序代码如下:
using System;
using System.Collections.Generic;
using System.Text;

namespace ThreadedBinaryTree
{
    class Program
    {
        static void Main(string[] args)
        {
            ThreadedBST t = new ThreadedBST();
            while (true)
            {
                //创建运行界面菜单选项//
                Console.WriteLine("\nMenu");
                Console.WriteLine("1.insert");
                Console.WriteLine("2.inorder");
                Console.WriteLine("3.delete");
                Console.WriteLine("4.Exit");
                Console.Write("\nEnter your choice (1-4)" + "  ");
                char ch = Convert.ToChar(Console.ReadLine());
                Console.WriteLine();
                switch (ch)
                {
                    case '1':
                        {
                            Console.Write("Enter a number" + "  ");
                            int n = Convert.ToInt32(Console.ReadLine());
                            t.insert(n);//执行插入节点操作//
                        }
                        break;
                    case '2':
                        {
                            t.inorder(t.h);//执行中序遍历操作//
                        }
                        break;
                    case '3':
                        {
                            Console.WriteLine("please enter a number inside the tree");
                            int num = Convert.ToInt32(Console.ReadLine());
                            t.d(num);//执行删除节点操作//
                        }
                        break;
                    case '4':
                        return;
                    default:
                        {
                            Console.WriteLine("Invalid option");
                            break;
                        }
                }
            }
        }
    }
    //定义线索二叉树中的节点类型//
    class Node
    {
        public Node lc;
        public Node rc;
        public int lt;
        public int rt;
        public int dt;
        public Node(int data, int lth, int rth, Node lch, Node rch)
        {
            dt = data; lt = lth; rt = rth; lc = lch; rc = rch;
        }
    }
    //创建包含各种操作的类//
    class ThreadedBST
    {
        //声明头节点并初始化为空//
        public Node h;
        public ThreadedBST()
        {
            h = null;
        }
        //此函数可定位待插入节点tmp的父节点cur,也能找到待删除节点cur的父节点par//
        public void find(int e, ref Node par, ref Node cur)
        {
            par = h;
            cur = h.lc;
            while (true)
            {
                if (e > cur.dt && cur.rt == 1) { par = cur; cur = cur.rc; }
                if (e > cur.dt && cur.rt == 0) break;
                if (e < cur.dt && cur.lt == 1) { par = cur; cur = cur.lc; }
                if (e < cur.dt && cur.lt == 0) break;
                if (e == cur.dt) break;
            }


        }
        //插入节点//
        public void insert(int e)
        {
            Node tmp;//声明新节点//
            //第一次插入节点//
            if (h == null)
            {
                Node p;
                tmp = new Node(e, 0, 0, null, null); p = new Node(0, 0, 0, null, null);//初始化tmp,p仅作头结点之用,其数据域的值无实际意义//
                h = p; h.lc = tmp; h.lt = 1; h.rc = h; tmp.lc = h; tmp.rc = h;//使h不为空以引用h的成员//
            }
            //插入前树不为空//
            else
            {
                Node par = null, cur = null; tmp = new Node(e, 0, 0, null, null);
                find(e, ref par, ref cur);
                //调用后得到待插入节点tmp的父节点cur//
                if (e > cur.dt)
                {
                    tmp.rc = cur.rc; tmp.lc = cur; cur.rt = 1; cur.rc = tmp;
                }
                if (e < cur.dt)
                {
                    tmp.lc = cur.lc; tmp.rc = cur; cur.lt = 1; cur.lc = tmp;
                }
                //插入节点的值不可重复//
                if (e == cur.dt)
                { Console.WriteLine("Duplicate number not allowed"); }
            }
        }
        //返回当前节点的中序后继节点//
        public Node inor_suc(ref Node cur)
        {
            Node suc;
            if (cur.rt == 0) { suc = cur.rc; return suc; }
            else
            {
                suc = cur.rc;
                while (suc.lt != 0)
                    suc = suc.lc;
                return suc;
            }
        }
        //中序遍历//
        public void inorder(Node ptr)
        {
            while (ptr.lt != 0)
                ptr = ptr.lc;
            Console.Write(ptr.dt + "  ");
            while (ptr.rc != h)
            {
                ptr = inor_suc(ref ptr); Console.Write(ptr.dt + "  ");
            }

        }
        //以下是删除节点的三种情形,分别用三个子函数实现//
        //1.待删除节点为叶节点//
        public void c1(ref Node par, ref Node cur)
        {
            if (par == h) { h.lt = 0; h.lc = h; }
            else
            {
                if (par.lc == cur) { par.lt = 0; par.lc = cur.lc; }
                if (par.rc == cur) { par.rt = 0; par.rc = cur.rc; }
            }
        }
        //2.待删除节点有且仅有一个孩子节点//
        public void c2(ref Node par, ref Node cur)
        {
            if (par == h)
            {
                if (cur.lt == 1) { par.lc = cur.lc; cur.lc.rc = cur.rc; cur.lc = null; cur.rc = null; }
                else
                {
                    par.lc = cur.rc; cur.rc.lc = cur.lc; cur.rc = null; cur.lc = null;
                }
            }
            else
            {
                if (par.rc == cur)
                {
                    if (cur.lt == 1) { par.rc = cur.lc; cur.lc.rc = cur.rc; cur.lc = null; cur.rc = null; }
                    else { par.rc = cur.rc; cur.rc.lc = cur.lc; cur.rc = null; cur.lc = null; }
                }
                else
                {
                    if (cur.lt == 1) { par.lc = cur.lc; cur.lc.rc = cur.rc; cur.lc = null; cur.rc = null; }
                    else { par.lc = cur.rc; cur.rc.lc = cur.lc; cur.rc = null; cur.lc = null; }

                }
            }
        }
        //3.待删除节点有两个孩子节点//
        public void c3(ref Node cur)
        {
            Node crt = inor_suc(ref cur); //找到待删除节点cur的中序后继节点crt//
            Node prt;//声明crt的父节点为prt//
            cur.dt = crt.dt;//用crt数据域的值覆盖cur//
            if (crt == cur.rc)
                prt = cur;
            else
                prt = crt.rc;
            //删除节点crt//
            if (crt.rt == 0)
                c1(ref prt, ref crt);
            else
                c2(ref prt, ref crt);
        }
        //删除节点//
        public void d(int e)
        {
            Node par = null, cur = null;
            find(e, ref par, ref cur);
            if (e == cur.dt)
            {
                if (cur.lt == 0 && cur.rt == 0) c1(ref par, ref cur);
                if (cur.lt == 1 && cur.rt == 1) c3(ref cur);
                if ((cur.lt == 0 && cur.rt != 0) || (cur.rt == 0 && cur.lt != 0))
                    c2(ref par, ref cur);
            }
        }



    }

}
搜索更多相关主题的帖子: 二叉树 线索 
2010-05-11 21:03
hzh512
Rank: 9Rank: 9Rank: 9
等 级:蜘蛛侠
威 望:6
帖 子:234
专家分:1333
注 册:2009-6-5
收藏
得分:14 
把能运行的程序贴出来,
最好用C/C++

编程=用几种语言在某个或几个平台上通过抽象思维运用一系列算法来解决现实中问题的手段
2010-05-11 21:21
边城迷途
Rank: 1
等 级:新手上路
帖 子:5
专家分:0
注 册:2010-5-11
收藏
得分:0 
这已经是完整的程序了,我使用的开发平台是visual studio 2005控制台应用程序,在上面能够运行。插入和中序遍历操作没有问题,就是删除操作存在不足之处(问题已述如上)。我陈述的问题就存在于用C#语言编写的程序代码中,若换用c或c++或许就不存在问题了(如果我能编出来的话)。如果说我的程序是脚,那么你的完美的解答就是我要找的那双鞋。反过来就不行了,你说是不是,哈哈...打个比方而已!
2010-05-11 22:52
hzh512
Rank: 9Rank: 9Rank: 9
等 级:蜘蛛侠
威 望:6
帖 子:234
专家分:1333
注 册:2009-6-5
收藏
得分:0 
只能帮你顶一下了。

编程=用几种语言在某个或几个平台上通过抽象思维运用一系列算法来解决现实中问题的手段
2010-05-12 13:21
边城迷途
Rank: 1
等 级:新手上路
帖 子:5
专家分:0
注 册:2010-5-11
收藏
得分:0 
还是要谢谢你。。。毕竟C#语言是一门新兴的编程语言,数据结构中的各种算法基本上均由c/c++实现,用C#语言编的关于线索二叉树的理想化的代码网上也很难找。谢谢。
2010-05-12 14:19
liubangchuan
该用户已被删除
收藏
得分:0 
提示: 作者被禁止或删除 内容自动屏蔽
2010-05-15 21:26
快速回复:C#编的线索二叉树错在哪里?望高手指点迷津!
数据加载中...
 
   



关于我们 | 广告合作 | 编程中国 | 清除Cookies | TOP | 手机版

编程中国 版权所有,并保留所有权利。
Powered by Discuz, Processed in 0.023002 second(s), 7 queries.
Copyright©2004-2024, BCCN.NET, All Rights Reserved