欧拉定理的推论:
若正整数a,n互质,那么对于任意正整数b,有a^b≡a^(b mod φ(n))(mod n)
证明如下:(类似费马小定理的证明)
把目标式做一简单变形:a^(b - b mod φ(n))* a^(b mod φ(n))≡ a^(b mod φ(n))(mod n),所以接下来只需要证明a^(b - b mod φ(n))≡ 1 (mod n),又因为:
( b - b mod φ(n))| φ(n),不妨设:( b - b mod φ(n))= q*φ(n)(q为自然数),则有a^(q*φ(n))== (a^q)^φ(n),因为a,n互质,那么(a^q)与n也互质,
那么就转换到了欧拉定理:(a^q)^φ(n)≡ 1 (mod n),成立。所以我们这个推论成立。
b mod φ(n)是求模就是求余数的关系不是乘法,不等于b*φ(n),所以解释一下这一步:设b=q∗φ(n)+r,其中0≤r<φ(n),即r=b mod φ(n).于是:
( b - b mod φ(n))| φ(n),
所以前面的成立。
这都是简述版,我压缩了,希望您能理解,明白一点过程就好,再深入的讲我也不会。
RSA密码的加解密过程的推导证明我整理一下再讲。
若正整数a,n互质,那么对于任意正整数b,有a^b≡a^(b mod φ(n))(mod n)
证明如下:(类似费马小定理的证明)
把目标式做一简单变形:a^(b - b mod φ(n))* a^(b mod φ(n))≡ a^(b mod φ(n))(mod n),所以接下来只需要证明a^(b - b mod φ(n))≡ 1 (mod n),又因为:
( b - b mod φ(n))| φ(n),不妨设:( b - b mod φ(n))= q*φ(n)(q为自然数),则有a^(q*φ(n))== (a^q)^φ(n),因为a,n互质,那么(a^q)与n也互质,
那么就转换到了欧拉定理:(a^q)^φ(n)≡ 1 (mod n),成立。所以我们这个推论成立。
b mod φ(n)是求模就是求余数的关系不是乘法,不等于b*φ(n),所以解释一下这一步:设b=q∗φ(n)+r,其中0≤r<φ(n),即r=b mod φ(n).于是:
( b - b mod φ(n))| φ(n),
所以前面的成立。
这都是简述版,我压缩了,希望您能理解,明白一点过程就好,再深入的讲我也不会。
RSA密码的加解密过程的推导证明我整理一下再讲。