| 网站首页 | 业界新闻 | 小组 | 威客 | 人才 | 下载频道 | 博客 | 代码贴 | 在线编程 | 编程论坛
欢迎加入我们,一同切磋技术
用户名:   
 
密 码:  
共有 6832 人关注过本帖
标题:为什么在vc6.0上能运行的程序到vs2010上出现这么多错误,求助!!!
取消只看楼主 加入收藏
glharry
Rank: 1
等 级:新手上路
帖 子:14
专家分:0
注 册:2013-7-1
结帖率:60%
收藏
已结贴  问题点数:10 回复次数:4 
为什么在vc6.0上能运行的程序到vs2010上出现这么多错误,求助!!!
#include "stdio.h"
//#include "cv.h"
//#include "highgui.h"
#include "FeatureDetect.h"
#include <math.h>
#include <iostream>
#include <fstream>
using namespace std;
#include <vector>
#include <algorithm>
#include <functional>

#define NUM 15
int distan[NUM] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
//int fw[NUM] = {11,12,13,14,15,16,17,18,19,20,21,22,23,24,25};
//int L[6] = {8,16,20,32,50,64};

int main(int argc, char** argv)
{
    //声明所需参数
    IplImage* pSrc;
    IplImage* pGray;

        
    double dMean1             = 0.0;//均值
    double dVar1              = 0.0;//方差
    double dEnergy1              = 0.0;//能量
    double dEntropy1          = 0.0;//熵
    double dContrast1          = 0.0;//惯性矩 对比度
    double dHom1              = 0.0;//局部平稳性 均匀性
    double dCorrelation1      = 0.0;//相关性
    double dDis1              = 0.0;//相异性
   
    double dMean2             = 0.0;//均值
    double dVar2              = 0.0;//方差
    double dEnergy2              = 0.0;//能量
    double dEntropy2          = 0.0;//熵
    double dContrast2         = 0.0;//惯性矩 对比度
    double dHom2              = 0.0;//局部平稳性 均匀性
    double dCorrelation2      = 0.0;//相关性
    double dDis2              = 0.0;//相异性
   
    double dMean3             = 0.0;//均值
    double dVar3              = 0.0;//方差
    double dEnergy3              = 0.0;//能量
    double dEntropy3          = 0.0;//熵
    double dContrast3         = 0.0;//惯性矩 对比度
    double dHom3               = 0.0;//局部平稳性 均匀性
    double dCorrelation3      = 0.0;//相关性
    double dDis3              = 0.0;//相异性
   
    double dMean4             = 0.0;//均值
    double dVar4              = 0.0;//方差
    double dEnergy4              = 0.0;//能量
    double dEntropy4          = 0.0;//熵
    double dContrast4         = 0.0;//惯性矩 对比度
    double dHom4               = 0.0;//局部平稳性 均匀性
    double dCorrelation4      = 0.0;//相关性
    double dDis4              = 0.0;//相异性
   
    double dMean              = 0.0;//均值
    double dVar               = 0.0;//方差
    double dEnergy              = 0.0;//能量
    double dEntropy              = 0.0;//熵
    double dContrast          = 0.0;//惯性矩 对比度
    double dHom                = 0.0;//局部平稳性 均匀性
    double dCorrelation          = 0.0;//相关性
    double dDis               = 0.0;//相异性

    //临时缓冲变量
    unsigned char** arLocalImage;
    //宽 高 行长
    int lineByte;
    //遍历图象的横、纵坐标
    int i,j;
    int p,q;

//    #define  OIL_PICTURE //样本类别 是否为石油图像

    //声明一个特征类
    FeatureDetect features;

   
    //文件操作 先打开文件 失败退出程序
    //向磁盘输出数据文件
    cout << "现在打开文件!  ";
    ofstream out("E:\\biye\\MYPROJECT\\data\\d10.txt",ios::app);//若文件不存在创建之,存在则在原文后面写内容
/*    if(! out)
    {
        cerr<<"open error!"<<endl;
        return -1;
    }*/
    cout <<"数据文件打开成功!"<<endl;
    char buffer[800]={0};//格式化后的数据缓冲区
    char filename[15]={0};
   

//    #define  OIL_PICTURE //样本类别 是否为石油图像

   
    //载入图片
    if( (pSrc = cvLoadImage(argv[1],1)) == 0 )
    {
        fprintf(stderr, "Can not load Image. ");
        cout <<"can't load image!"<<endl;
        return -2;
    }
        
   
        //转换为灰度图像   并滤波
        pGray = cvCreateImage(cvSize(pSrc->width,pSrc->height),IPL_DEPTH_8U,1);
        cvCvtColor(pSrc,pGray,CV_BGR2GRAY);
        cvSmooth(pGray,pGray,CV_GAUSSIAN);
   
        
        //每行像素所占字节数,
        lineByte=pGray->widthStep;

        //设置感兴趣区域
        //  CvRect rect = cvRect(x,y,width,height);
        //1.bmp
    //    CvRect rect = cvRect(100,50,400,150);
     //  CvRect rect1 = cvRect(70,340,480,130);

        //4.bmp
    //    CvRect rect = cvRect(26,61,196,124);
    //    CvRect rect1 = cvRect(150,300,280,150);

        //6.bmp
         CvRect rect = cvRect(80,270,240,187);
         CvRect rect1 = cvRect(240,20,280,128);
        cvRectangle(pSrc,cvPoint(rect.x,rect.y),cvPoint(rect.x+rect.width,rect.y+rect.height),cvScalar(0,0,255));
        cvRectangle(pSrc,cvPoint(rect1.x,rect1.y),cvPoint(rect1.x+rect1.width,rect1.y+rect1.height),cvScalar(255,255,255));
    //    cvSetImageROI(pGray,rect);
            
    //创建窗口
    cvNamedWindow("SrcImage",CV_WINDOW_AUTOSIZE);
    cvNamedWindow("GrayImage",CV_WINDOW_AUTOSIZE);

    //显示各图像
    cvShowImage("SrcImage",pSrc);
    cvShowImage("GrayImage",pGray);
    cvWaitKey(0);

        for (int k=0;k<NUM;k++)
        {
            features.SetDistance(distan[k]);
        //    features.SetFW(fw[k]);
        //    features.SetGLN(L[k]);
        //features.SetGLN(128);
            //将图像分成FilterWindowWidth*FilterWindowWidth个纹理块 为单独一个纹理块分配内存空间
            arLocalImage=(unsigned char **)calloc((unsigned)features.FilterWindowWidth,sizeof(unsigned char*));
            
            for(i=0;i<features.FilterWindowWidth;i++)
            {
                arLocalImage[i]=(unsigned char *)calloc((unsigned)features.FilterWindowWidth,sizeof(unsigned char));
            }


            //保存一些参数值
            sprintf(buffer,"d=%d,  FW=%d,  L=%d,  ",features.distance,features.FilterWindowWidth,features.GrayLayerNum);
            cout<<endl<<buffer<<endl;
        //    out<<buffer<<endl;

            //油的
            vector<double> feature[7];//用于存放提取的特征值
            double feature_cen[7] = {0.0};//特征中心
            double feature_var[7] = {0.0};//特征方差
            double feature_r[7] = {0.0};//特征间距
            
            //水的相应变量申明
            vector<double> feature_s[7];//用于存放提取的特征值
            double feature_cen_s[7] = {0.0};//特征中心
            double feature_var_s[7] = {0.0};//特征方差
            double feature_r_s[7] = {0.0};//特征间距
            
            double f[7] = {0.0};//f值
   
    /////////////////////////////////////////////////////////////
    ////////////////////求ROI的纹理特征

        //统计时间
        LARGE_INTEGER m_liPerfFreq={0};
        //获取每秒多少CPU Performance Tick
        QueryPerformanceFrequency(&m_liPerfFreq);
        
        LARGE_INTEGER m_liPerfStart={0};
        QueryPerformanceCounter(&m_liPerfStart);   

        //将ROI分为大小为FilterWindowWidth*FilterWindowWidth的纹理块 共rolltimeH*rolltimeW个
        //ROI能否整分为几块 没影响 可以多余一部分在右边和上边 可整分可不整分
        int rolltimeH = rect.height/features.FilterWindowWidth;//高分为几块
        int rolltimeW = rect.width/features.FilterWindowWidth;//宽分为几块

        cout <<"共"<<rolltimeW<<"*"<<rolltimeH<<"="<<rolltimeW*rolltimeH<<"个油纹理块"<<endl;

        //将ROI分成若干个纹理块 计算每一个纹理块的纹理特征值
        for(i=0;i<rolltimeH;i++)
        {
            for(j=0;j<rolltimeW;j++)
            {
                //首先将目标图像数据赋值给第(i,j)个纹理块
                for(p=0;p<features.FilterWindowWidth;p++)
                {
                    for(q=0;q<features.FilterWindowWidth;q++)
                    {
                        //表明源图像能否整分为几块 没影响 可以多余一部分在右边和上边
                        arLocalImage[p][q] = *(pGray->imageData+(rect.y+i*features.FilterWindowWidth+p)*lineByte+(rect.x+j*features.FilterWindowWidth+q));  
                    }
                }
                //计算这一个纹理块的灰度共生矩阵 第二个参数为纹理块的宽度 一般纹理块选择长宽都一样
                (arLocalImage,features.FilterWindowWidth);
                //计算四个方向上的纹理特征
                (dMean1,dVar1,dEnergy1, dEntropy1, dContrast1, dCorrelation1, dHom1,dDis1, features.PMatrixH, features.GrayLayerNum);
                (dMean2,dVar2,dEnergy2, dEntropy2, dContrast2, dCorrelation2, dHom2,dDis2, features.PMatrixV, features.GrayLayerNum);
                (dMean3,dVar3,dEnergy3, dEntropy3, dContrast3, dCorrelation3, dHom3,dDis3, features.PMatrixLD, features.GrayLayerNum);
                (dMean4,dVar4,dEnergy4, dEntropy4, dContrast4, dCorrelation4, dHom4,dDis4, features.PMatrixRD, features.GrayLayerNum);
            
                dMean = (dMean1+dMean2+dMean3+dMean4)/4;
                dVar = (dVar1+dVar2+dVar3+dVar4)/4;
                dEnergy = (dEnergy1+dEnergy2+dEnergy3+dEnergy4)/4;
                dEntropy = (dEntropy1+dEntropy2+dEntropy3+dEntropy4)/4;
                dContrast = dContrast2;//取90°方向
                dHom = (dHom1+dHom2+dHom3+dHom4)/4;
                dDis = dDis2;//取90°方向

                //将单个纹理块的特征数据写入vector变量中
                feature[0].push_back(dMean*1e7);
                feature[1].push_back(dVar);
                feature[2].push_back(dEnergy*1e4);
                feature[3].push_back(dEntropy*1e4);
                feature[4].push_back(dContrast*1e4);
                feature[5].push_back(dHom*1e4);
                feature[6].push_back(dDis*1e4);

                //写入单个的纹理特征值
//                 #ifdef OIL_PICTURE
//                     out << "1 ";
//                 #else
//                     out << "-1 ";
//                 #endif
        /*        out << "1 ";
                sprintf(buffer,"1:%.6f 2:%d 3:%.6f 4:%.6f 5:%.6f 6:%.6f 7:%.6f",dMean,(int)(dVar+0.5),dEnergy,dEntropy,dContrast,dHom,dDis);
                out <<buffer<<endl;
                */
            }        
        }


    //求所有基窗口的每种特征的均值和特征间距
    //结束时间
    LARGE_INTEGER liPerfNow={0};
    // 计算CPU运行到现在的时间
    QueryPerformanceCounter(&liPerfNow);
    int time=( ((liPerfNow.QuadPart - m_liPerfStart.QuadPart) * 1000)/m_liPerfFreq.QuadPart);
    char buffer0[100];
    sprintf(buffer0,"執行時間 %d millisecond ",time);
    cout<<buffer0<<endl;
     
    for (i=0;i<7;i++)
    {
        sort(feature[i].begin(),feature[i].end());//先排序 默认为升序
        int N=0,dN=0;//N为向量中元素个数 dN为要删除的元素个数
        vector<double>::iterator it = feature[i].begin();

        //掐头去尾 两头各去掉1/10
        N = feature[i].size();
        dN = int(N/10+0.5);

        for (j=0;j<dN;j++)
        {
            feature[i].erase(it);//删除头dN个元素
            feature[i].pop_back();//删除尾dN个元素
        }
        
//         //写进文件中
//         ofstream out1("C:\\Users\\min\\Desktop\\newpic\\fff.txt", ios::app);
//         char buff[200] = {0};
//         out1 << i<<":";
//         for (j=0;j<feature[i].size();j++)
//         {
//             sprintf(buff,"%.6f",feature[i].at(j));
//             out1 <<buff<<" ";
//         }
//         out1<<endl<<endl;
//         out1.close();

        double total=0.0;//考虑超出范围的问题
        N=feature[i].size();
        //求特征均值(中心) (是放大之后的)
        for (j=0;j<N;j++)
        {
            total += feature[i].at(j);//求和
        }   
        feature_cen[i] = total/N;//求均值 即特征中心
        
        //求特征间距 (是放大之后的)
        total = 0.0;//清零
        for(j=0;j<N;j++)
        {
            total += abs(feature[i].at(j)-feature_cen[i]);
        }
        feature_r[i] =total/N;//求特征间距
        
        //求特征方差 (聚散程度 是放大之后的 应除以放大倍数的平方进行还原)
        for (j=0;j<N;j++)
        {
            total += (feature[i].at(j)-feature_cen[i])*(feature[i].at(j)-feature_cen[i]);
        }
        feature_var[i] = total/N;
    }

/////////////////////////////////////////////////////////////////////////////////////////////////////
        //水的

    ////////////////////求pGray的纹理特征
        
        //将目标图像分为大小为FilterWindowWidth*FilterWindowWidth的纹理块 共rolltimeH*rolltimeW个
        //目标图像能否整分为几块 没影响 可以多余一部分在右边和上边 可整分可不整分
        int rolltimeH1 = rect1.height/features.FilterWindowWidth;//高分为几块
        int rolltimeW1 = rect1.width/features.FilterWindowWidth;//宽分为几块
        cout <<"共"<<rolltimeW1<<"*"<<rolltimeH1<<"="<<rolltimeW1*rolltimeH1<<"个水纹理块"<<endl;

        //将图像分成若干个窗口,计算其纹理均值 计算每一个纹理块的纹理特征值
        for(i=0;i<rolltimeH1;i++)
        {
            for(j=0;j<rolltimeW1;j++)
            {
                //首先将目标图像数据赋值给第(i,j)个纹理块
                for(p=0;p<features.FilterWindowWidth;p++)
                {
                    for(q=0;q<features.FilterWindowWidth;q++)
                    {
                        //表明源图像能否整分为几块 没影响 可以多余一部分在右边和上边
                        arLocalImage[p][q] = *(pGray->imageData+(rect1.y+i*features.FilterWindowWidth+p)*lineByte+(rect1.x+j*features.FilterWindowWidth+q));  
                    }
                }
                //计算这一个纹理块的灰度共生矩阵 第二个参数为纹理块的宽度 一般纹理块选择长宽都一样
                (arLocalImage,features.FilterWindowWidth);
                //计算四个方向上的纹理特征
                (dMean1,dVar1,dEnergy1, dEntropy1, dContrast1, dCorrelation1, dHom1,dDis1, features.PMatrixH, features.GrayLayerNum);
                (dMean2,dVar2,dEnergy2, dEntropy2, dContrast2, dCorrelation2, dHom2,dDis2, features.PMatrixV, features.GrayLayerNum);
                (dMean3,dVar3,dEnergy3, dEntropy3, dContrast3, dCorrelation3, dHom3,dDis3, features.PMatrixLD, features.GrayLayerNum);
                (dMean4,dVar4,dEnergy4, dEntropy4, dContrast4, dCorrelation4, dHom4,dDis4, features.PMatrixRD, features.GrayLayerNum);
               
                dMean = (dMean1+dMean2+dMean3+dMean4)/4;
                dVar = (dVar1+dVar2+dVar3+dVar4)/4;
                dEnergy = (dEnergy1+dEnergy2+dEnergy3+dEnergy4)/4;
                dEntropy = (dEntropy1+dEntropy2+dEntropy3+dEntropy4)/4;
                dContrast = dContrast2;//取90°方向
                dHom = (dHom1+dHom2+dHom3+dHom4)/4;
                dDis = dDis2;//取90°方向
               

                //将单个纹理块的特征数据写入vector变量中
                feature_s[0].push_back(dMean*1e7);
                feature_s[1].push_back(dVar);
                feature_s[2].push_back(dEnergy*1e4);
                feature_s[3].push_back(dEntropy*1e4);
                feature_s[4].push_back(dContrast*1e4);
                feature_s[5].push_back(dHom*1e4);
                feature_s[6].push_back(dDis*1e4);
        
            
                //写入单个的纹理特征值
//                 #ifdef OIL_PICTURE
//                     out << "1 ";
//                 #else
//                     out << "-1 ";
//                 #endif

        /*        out << "-1 ";   
                sprintf(buffer,"1:%.6f 2:%d 3:%.6f 4:%.6f 5:%.6f 6:%.6f 7:%.6f",dMean,(int)(dVar+0.5),dEnergy,dEntropy,dContrast,dHom,dDis);
                out <<buffer<<endl;
                */
            }        
        }


    //求所有基窗口的每种特征的均值和特征间距
   
     
    for (i=0;i<7;i++)
    {
        sort(feature_s[i].begin(),feature_s[i].end());//先排序 默认为升序
        int N=0,dN=0;//N为向量中元素个数 dN为要删除的元素个数
        vector<double>::iterator it = feature_s[i].begin();

        //掐头去尾 两头各去掉1/10
        N = feature_s[i].size();
        dN = int(N/10+0.5);

        for (j=0;j<dN;j++)
        {
            feature_s[i].erase(it);//删除头dN个元素
            feature_s[i].pop_back();//删除尾dN个元素
        }


//         //写进文件中
//        ofstream out1("E:\\biye\\MYPROJECT\\data\\data0.txt", ios::app);
//         char buff[200] = {0};
//         out1 << i<<":";
//         for (j=0;j<feature_s[i].size();j++)
//         {
//             sprintf(buff,"%.6f",feature_s[i].at(j));
//             out1 <<buff<<" ";
//         }
//         out1<<endl<<endl;
//         out1.close();


        double total=0.0;//考虑超出范围的问题
        N=feature_s[i].size();
        //求特征均值(中心) (是放大之后的)
        for (j=0;j<N;j++)
        {
            total += feature_s[i].at(j);//求和
        }   
        feature_cen_s[i] = total/N;//求均值 即特征中心
        
        //求特征间距 (是放大之后的)
        total = 0.0;//清零
        for(j=0;j<N;j++)
        {
            double temp = feature_s[i].at(j);
            total += abs(feature_s[i].at(j)-feature_cen_s[i]);
        }
        feature_r_s[i] =total/N;//求特征间距
        
        //求特征方差 (聚散程度 是放大之后的 应除以放大倍数的平方进行还原)
        for (j=0;j<N;j++)
        {
            total += (feature_s[i].at(j)-feature_cen_s[i])*(feature_s[i].at(j)-feature_cen_s[i]);
        }
        feature_var_s[i] = total/N;
    }

    //计算f
    for (i=0;i<7;i++)
    {
        if ( feature_r[i]+feature_r_s[i] == 0 )
        {
            f[i] = 0.0;
        }
        else
        {
            f[i] = abs(feature_cen[i]-feature_cen_s[i])/(feature_r[i]+feature_r_s[i]);
        }
    }


    //写入基窗口数目
    cout <<"Ny="<<feature[0].size()<<"  ";//总的基元数
    cout <<"Ns="<<feature_s[0].size()<<endl;

    //缩小还原油的特征均值 间距 方差
    feature_cen[0] /=1e7;
    for (j=2;j<7;j++)
    {
        feature_cen[j] /=1e4;
    }
   
    feature_r[0] /=1e7;
    for (j=2;j<7;j++)
    {
        feature_r[j] /=1e4;
    }
   
    feature_var[0] /=1e7;
    feature_var[0] /=1e7;
    for (j=2;j<7;j++)
    {
        feature_var[j] /=1e4;
        feature_var[j] /=1e4;
    }
   
    //缩小还原水的特征均值 间距 方差
    feature_cen_s[0] /= 1e7;
    for (j=2;j<7;j++)
    {
        feature_cen_s[j] /= 1e4;
    }
   
    feature_r_s[0] /= 1e7;
    for (j=2;j<7;j++)
    {
        feature_r_s[j] /= 1e4;
    }
   
    feature_var_s[0] /= 1e7;
    feature_var_s[0] /= 1e7;
    for (j=2;j<7;j++)
    {
        feature_var_s[j] /= 1e4;
        feature_var_s[j] /= 1e4;
    }
            
    //写入结果(还原之后的特征数据)
    cout<<"开始写入纹理特征值"<<endl;
   
    //写油的 特征
    //out << "1 "<<endl;
//    out << "1 ";
        
    //写入均值
//    out << "cen: ";
//    sprintf(buffer,"1:%.6f 2:%d 3:%.6f 4:%.6f 5:%.6f 6:%.6f 7:%.6f",feature_cen[0],(int)(feature_cen[1]+0.5),feature_cen[2],feature_cen[3],feature_cen[4],feature_cen[5],feature_cen[6]);
//    sprintf(buffer,"%.6f %d %.6f %.6f %.6f %.6f %.6f;",feature_cen[0],(int)(feature_cen[1]+0.5),feature_cen[2],feature_cen[3],feature_cen[4],feature_cen[5],feature_cen[6]);
//    out <<buffer<<endl;
   
    //写入方差
//    out <<"var: ";
    sprintf(buffer,"1:%.6f 2:%.6f 3:%.6f 4:%.6f 5:%.6f 6:%.6f 7:%.6f",feature_var[0],feature_var[1],feature_var[2],feature_var[3],feature_var[4],feature_var[5],feature_var[6]);
//    sprintf(buffer,"%.6f %d %.6f %.6f %.6f %.6f %.6f;",feature_var[0],(int)(feature_var[1]+0.5),feature_var[2],feature_var[3],feature_var[4],feature_var[5],feature_var[6]);
    out<<buffer<<endl;
   
    //写入间距
//    out<< "  r: ";
//    sprintf(buffer,"1:%.6f 2:%d 3:%.6f 4:%.6f 5:%.6f 6:%.6f 7:%.6f",feature_r[0],(int)(feature_r[1]+0.5),feature_r[2],feature_r[3],feature_r[4],feature_r[5],feature_r[6]);
//    sprintf(buffer,"%.6f %d %.6f %.6f %.6f %.6f %.6f;",feature_r[0],(int)(feature_r[1]+0.5),feature_r[2],feature_r[3],feature_r[4],feature_r[5],feature_r[6]);
//    out <<buffer<<endl<<endl;
   


    //写水的特征
//    out << "-1 "<<endl;
            
//    out << "cen: ";
    //sprintf(buffer,"1:%.6f 2:%d 3:%.6f 4:%.6f 5:%.6f 6:%.6f 7:%.6f",feature_cen_s[0],(int)(feature_cen_s[1]+0.5),feature_cen_s[2],feature_cen_s[3],feature_cen_s[4],feature_cen_s[5],feature_cen_s[6]);
//    sprintf(buffer,"%.6f %d %.6f %.6f %.6f %.6f %.6f;",feature_cen_s[0],(int)(feature_cen_s[1]+0.5),feature_cen_s[2],feature_cen_s[3],feature_cen_s[4],feature_cen_s[5],feature_cen_s[6]);
//    out <<buffer<<endl;
   
//    out<< "var: ";
    //sprintf(buffer,"1:%.6f 2:%.6f 3:%.6f 4:%.6f 5:%.6f 6:%.6f 7:%.6f",feature_var_s[0],feature_var_s[1],feature_var_s[2],feature_var_s[3],feature_var_s[4],feature_var_s[5],feature_var_s[6]);
//    sprintf(buffer,"%.6f %d %.6f %.6f %.6f %.6f %.6f;",feature_var_s[0],(int)(feature_var_s[1]+0.5),feature_var_s[2],feature_var_s[3],feature_var_s[4],feature_var_s[5],feature_var_s[6]);
//    out <<buffer<<endl;
   
//    out<< "  r: ";
    //sprintf(buffer,"1:%.6f 2:%d 3:%.6f 4:%.6f 5:%.6f 6:%.6f 7:%.6f",feature_r_s[0],(int)(feature_r_s[1]+0.5),feature_r_s[2],feature_r_s[3],feature_r_s[4],feature_r_s[5],feature_r_s[6]);
//    sprintf(buffer,"%.6f %d %.6f %.6f %.6f %.6f %.6f;",feature_r_s[0],(int)(feature_r_s[1]+0.5),feature_r_s[2],feature_r_s[3],feature_r_s[4],feature_r_s[5],feature_r_s[6]);
//    out <<buffer<<endl<<endl;

    //写f
//    out << "  f: ";
//    sprintf(buffer,"1:%.6f 2:%.6f 3:%.6f 4:%.6f 5:%.6f 6:%.6f 7:%.6f",f[0],f[1],f[2],f[3],f[4],f[5],f[6]);
//    sprintf(buffer,"%.6f %.6f %.6f %.6f %.6f %.6f %.6f;",f[0],f[1],f[2],f[3],f[4],f[5],f[6]);
//    out <<buffer<<endl;


//     sprintf(buffer,"1:%.6f 2:%d 3:%.6f 4:%.6f 5:%.6f 6:%.6f 7:%.6f 8:%.6f 9:%d 10:%.6f 11:%.6f 12:%.6f 13:%.6f 14:%.6f 15:%.6f 16:%.6f 17:%.6f 18:%.6f 19:%.6f 20:%.6f 21:%.6f",feature_cen[0],(int)(feature_cen[1]+0.5),feature_cen[2],feature_cen[3],feature_cen[4],feature_cen[5],feature_cen[6],feature_cen_s[0],(int)(feature_cen_s[1]+0.5),feature_cen_s[2],feature_cen_s[3],feature_cen_s[4],feature_cen_s[5],feature_cen_s[6],f[0],f[1],f[2],f[3],f[4],f[5],f[6]);
//     out << buffer<<endl;


    //释放arLocalImage的空间
    if (arLocalImage)
    {
        for (j=0;j<features.FilterWindowWidth;j++)
        {
            if (arLocalImage[j])
            {
                free(arLocalImage[j]);
                arLocalImage[j] = NULL;
            }
        }
        free(arLocalImage);
        arLocalImage = NULL;
    }


}

    /////////////////////////////////////////////////////////////////////////////
    cout << "写入数据完毕!关闭文件"<<endl;
    //关闭文件
    out.close();
//    cvWaitKey(0);

   


    //释放各种资源 (窗口和图像)
    cvReleaseImage(&pSrc);
    cvReleaseImage(&pGray);
    return 0;
}

 error C2664: “cvLoadImage”: 不能将参数 1 从“_TCHAR *”转换为“const
 与指向的类型无关;转换要求 reinterpret_cast、C 样式转换或函数样式转换
 error C2065: “LARGE_INTEGER”: 未声明的标识符
 error C2146: 语法错误: 缺少“;”(在标识符“m_liPerfFreq”的前面)
 error C2065: “m_liPerfFreq”: 未声明的标识符
 error C2059: 语法错误:“{”
 error C2143: 语法错误 : 缺少“;”(在“{”的前面)
 error C2143: 语法错误 : 缺少“;”(在“}”的前面)
 error C2065: “m_liPerfFreq”: 未声明的标识符
 error C3861: “QueryPerformanceFrequency”: 找不到标识符
 error C2065: “LARGE_INTEGER”: 未声明的标识符
 error C2146: 语法错误: 缺少“;”(在标识符“m_liPerfStart”的前面)
 error C2065: “m_liPerfStart”: 未声明的标识符
 error C2059: 语法错误:“{”
 error C2143: 语法错误 : 缺少“;”(在“{”的前面)
 error C2143: 语法错误 : 缺少“;”(在“}”的前面)
: error C2065: “m_liPerfStart”: 未声明的标识符
: error C3861: “QueryPerformanceCounter”: 找不到标识符
 error C2660: “FeatureDetect::ComputeMatrix”: 函数不接受 2 个参数
: error C2065: “LARGE_INTEGER”: 未声明的标识符
: error C2146: 语法错误: 缺少“;”(在标识符“liPerfNow”的前面)
 error C2065: “liPerfNow”: 未声明的标识符
 error C2059: 语法错误:“{”
 error C2143: 语法错误 : 缺少“;”(在“{”的前面)
 error C2143: 语法错误 : 缺少“;”(在“}”的前面)
: error C2065: “liPerfNow”: 未声明的标识符
: error C3861: “QueryPerformanceCounter”: 找不到标识符
: error C2065: “liPerfNow”: 未声明的标识符
 error C2228: “.QuadPart”的左边必须有类/结构/联合
1>          类型是“'unknown-type'”
 error C2065: “m_liPerfStart”: 未声明的标识符
 error C2228: “.QuadPart”的左边必须有类/结构/联合
1>          类型是“'unknown-type'”
 error C2065: “m_liPerfFreq”: 未声明的标识符
搜索更多相关主题的帖子: include 
2013-07-22 16:04
glharry
Rank: 1
等 级:新手上路
帖 子:14
专家分:0
注 册:2013-7-1
收藏
得分:0 
回复 2楼 peach5460
所以我们要转到vs2010里,想求出错的原因
2013-07-22 16:16
glharry
Rank: 1
等 级:新手上路
帖 子:14
专家分:0
注 册:2013-7-1
收藏
得分:0 
回复 4楼 柳林清风
唉,错误太多了,解决了一部分,还有好多错误没法解决,求高手指导啊
2013-07-22 16:35
glharry
Rank: 1
等 级:新手上路
帖 子:14
专家分:0
注 册:2013-7-1
收藏
得分:0 
回复 7楼 岁月如刀
配置好了,应该是头文件的问题
2013-07-23 16:23
glharry
Rank: 1
等 级:新手上路
帖 子:14
专家分:0
注 册:2013-7-1
收藏
得分:0 
回复 6楼 love云彩
对,不知道在vs里面该添加一些什么头文件
2013-07-23 16:24
快速回复:为什么在vc6.0上能运行的程序到vs2010上出现这么多错误,求助!!!
数据加载中...
 
   



关于我们 | 广告合作 | 编程中国 | 清除Cookies | TOP | 手机版

编程中国 版权所有,并保留所有权利。
Powered by Discuz, Processed in 0.023519 second(s), 8 queries.
Copyright©2004-2024, BCCN.NET, All Rights Reserved