| 网站首页 | 业界新闻 | 小组 | 威客 | 人才 | 下载频道 | 博客 | 代码贴 | 在线编程 | 编程论坛
欢迎加入我们,一同切磋技术
用户名:   
 
密 码:  
共有 5411 人关注过本帖
标题:大家来看看这个遗传算法程序C
取消只看楼主 加入收藏
hujia358
Rank: 1
等 级:新手上路
帖 子:3
专家分:0
注 册:2008-6-12
收藏
 问题点数:0 回复次数:1 
大家来看看这个遗传算法程序C
#include <stdio.h>
#include<graphics.h>
#include <math.h>
#include "graph.c"
/* 全局变量 */
struct individual                       /* 个体*/
{
    unsigned *chrom;                    /* 染色体 */
    double   fitness;                   /* 个体适应度*/
    double   varible;                   /* 个体对应的变量值*/   
    int      xsite;                     /* 交叉位置 */
    int      parent[2];                 /* 父个体  */
    int      *utility;                  /* 特定数据指针变量 */
};
struct bestever                         /* 最佳个体*/
{
    unsigned *chrom;                    /* 最佳个体染色体*/
    double   fitness;                   /* 最佳个体适应度 */
    double   varible;                   /* 最佳个体对应的变量值 */
    int      generation;                /* 最佳个体生成代 */
};
 struct individual *oldpop;             /* 当前代种群 */
 struct individual *newpop;             /* 新一代种群 */
 struct bestever bestfit;               /* 最佳个体 */
 double sumfitness;                     /* 种群中个体适应度累计 */
 double max;                            /* 种群中个体最大适应度 */
 double avg;                            /* 种群中个体平均适应度 */
 double min;                            /* 种群中个体最小适应度 */
 float  pcross;                         /* 交叉概率 */
 float  pmutation;                      /* 变异概率 */
 int    popsize;                        /* 种群大小  */
 int    lchrom;                         /* 染色体长度*/
 int    chromsize;                      /* 存储一染色体所需字节数 */
 int    gen;                            /* 当前世代数 */
 int    maxgen;                         /* 最大世代数   */
 int    run;                            /* 当前运行次数 */
 int    maxruns;                        /* 总运行次数   */
 int    printstrings;                   /* 输出染色体编码的判断,0 -- 不输出, 1 -- 输出 */
 int    nmutation;                      /* 当前代变异发生次数 */
 int    ncross;                         /* 当前代交叉发生次数 */
/* 随机数发生器使用的静态变量 */
static double oldrand[55];
static int jrand;
static double rndx2;
static int rndcalcflag;
/* 输出文件指针 */
FILE *outfp ;
/* 函数定义 */
void advance_random();
int flip(float);rnd(int, int);
void randomize();
double randomnormaldeviate();
float randomperc(),rndreal(float,float);
void warmup_random(float);
void initialize(),initdata(),initpop();
void initreport(),generation(),initmalloc();
void freeall(),nomemory(char *),report();
void writepop(),writechrom(unsigned *);
void preselect();
void statistics(struct individual *);
void title(),repchar (FILE *,char *,int);
void skip(FILE *,int);
int select();
void objfunc(struct individual *);
int crossover (unsigned *, unsigned *, unsigned *, unsigned *);
void mutation(unsigned *);

void initialize()      /* 遗传算法初始化 */
{
    /* 键盘输入遗传算法参数 */
    initdata();
    /* 确定染色体的字节长度 */
    chromsize = (lchrom/(8*sizeof(unsigned)));
    if(lchrom%(8*sizeof(unsigned))) chromsize++;
    /*分配给全局数据结构空间 */
    initmalloc();
    /* 初始化随机数发生器 */
    randomize();
    /* 初始化全局计数变量和一些数值*/
    nmutation = 0;
    ncross = 0;
    bestfit.fitness = 0.0;
    bestfit.generation = 0;
    /* 初始化种群,并统计计算结果 */
    initpop();
    statistics(oldpop);
    initreport();
}
void initdata()           /* 遗传算法参数输入 */
{
   char  answer[2];
    setcolor(9);
    disp_hz16("种群大小(20-100):",100,150,20);
    gscanf(320,150,9,15,4,"%d", &popsize);
    if((popsize%2) != 0)
      {
 fprintf(outfp, "种群大小已设置为偶数\n");
 popsize++;
      };
   setcolor(9);
   disp_hz16("染色体长度(8-40):",100,180,20);
   gscanf(320,180,9,15,4,"%d", &lchrom);
   setcolor(9);
   disp_hz16("是否输出染色体编码(y/n):",100,210,20);
   printstrings=1;
   gscanf(320,210,9,15,4,"%s", answer);
    if(strncmp(answer,"n",1) == 0) printstrings = 0;
   setcolor(9);
   disp_hz16("最大世代数(100-300):",100,240,20);
   gscanf(320,240,9,15,4,"%d", &maxgen);
   setcolor(9);
   disp_hz16("交叉率(0.2-0.9):",100,270,20);
   gscanf(320,270,9,15,5,"%f", &pcross);
   setcolor(9);
   disp_hz16("变异率(0.01-0.1):",100,300,20);
   gscanf(320,300,9,15,5,"%f", &pmutation);
}
void initpop()           /* 随机初始化种群 */
{
    int j, j1, k, stop;
    unsigned mask = 1;
    for(j = 0; j < popsize; j++)
    {
        for(k = 0; k < chromsize; k++)
        {
            oldpop[j].chrom[k] = 0;
            if(k == (chromsize-1))
                stop = lchrom - (k*(8*sizeof(unsigned)));
            else
                stop =8*sizeof(unsigned);
            for(j1 = 1; j1 <= stop; j1++)
            {
               oldpop[j].chrom[k] = oldpop[j].chrom[k]<<1;
               if(flip(0.5))
                  oldpop[j].chrom[k] = oldpop[j].chrom[k]|mask;
            }
        }
        oldpop[j].parent[0] = 0;     /* 初始父个体信息 */
        oldpop[j].parent[1] = 0;
        oldpop[j].xsite = 0;
        objfunc(&(oldpop[j]));       /* 计算初始适应度*/
    }
}
void initreport()               /* 初始参数输出 */
{
    void   skip();
    skip(outfp,1);
    fprintf(outfp,"             基本遗传算法参数\n");
    fprintf(outfp," -------------------------------------------------\n");
    fprintf(outfp,"    种群大小(popsize)     =   %d\n",popsize);
    fprintf(outfp,"    染色体长度(lchrom)    =   %d\n",lchrom);
    fprintf(outfp,"    最大进化代数(maxgen)  =   %d\n",maxgen);
    fprintf(outfp,"    交叉概率(pcross)        = %f\n", pcross);
    fprintf(outfp,"    变异概率(pmutation)     = %f\n", pmutation);
    fprintf(outfp," -------------------------------------------------\n");
    skip(outfp,1);
    fflush(outfp);
}
void generation()
{
  int mate1, mate2, jcross, j = 0;
  /*  每代运算前进行预选 */
  preselect();
  /* 选择, 交叉, 变异 */
  do
    {
      /* 挑选交叉配对 */
      mate1 = select();
      mate2 = select();
      /* 交叉和变异 */
      jcross = crossover(oldpop[mate1].chrom, oldpop[mate2].chrom, newpop[j].chrom, newpop[j+1].chrom);
      mutation(newpop[j].chrom);
      mutation(newpop[j+1].chrom);
      /* 解码, 计算适应度 */
      objfunc(&(newpop[j]));
      /*记录亲子关系和交叉位置 */
      newpop[j].parent[0] = mate1+1;
      newpop[j].xsite = jcross;
      newpop[j].parent[1] = mate2+1;
      objfunc(&(newpop[j+1]));
      newpop[j+1].parent[0] = mate1+1;
      newpop[j+1].xsite = jcross;
      newpop[j+1].parent[1] = mate2+1;
      j = j + 2;
    }
  while(j < (popsize-1));
}
void initmalloc()              /*为全局数据变量分配空间 */
{
  unsigned nbytes;
  char  *malloc();
  int j;
  /* 分配给当前代和新一代种群内存空间 */
  nbytes = popsize*sizeof(struct individual);
  if((oldpop = (struct individual *) malloc(nbytes)) == NULL)
    nomemory("oldpop");
  if((newpop = (struct individual *) malloc(nbytes)) == NULL)
    nomemory("newpop");
  /* 分配给染色体内存空间 */
  nbytes = chromsize*sizeof(unsigned);
  for(j = 0; j < popsize; j++)
    {
      if((oldpop[j].chrom = (unsigned *) malloc(nbytes)) == NULL)
 nomemory("oldpop chromosomes");
      if((newpop[j].chrom = (unsigned *) malloc(nbytes)) == NULL)
 nomemory("newpop chromosomes");
    }
  if((bestfit.chrom = (unsigned *) malloc(nbytes)) == NULL)
    nomemory("bestfit chromosome");
}
void freeall()               /* 释放内存空间 */
{
  int i;
   for(i = 0; i < popsize; i++)
    {
      free(oldpop[i].chrom);
      free(newpop[i].chrom);
    }
  free(oldpop);
  free(newpop);
  free(bestfit.chrom);
   }
void nomemory(string)        /* 内存不足,退出*/
  char *string;
{
  fprintf(outfp,"malloc: out of memory making %s!!\n",string);
  exit(-1);
}
void report()                /* 输出种群统计结果 */
{
    void  repchar(), skip();
    void  writepop(), writestats();
    repchar(outfp,"-",80);
    skip(outfp,1);
    if(printstrings == 1)
    {
        repchar(outfp," ",((80-17)/2));
        fprintf(outfp,"模拟计算统计报告  \n");
        fprintf(outfp, "世代数 %3d", gen);
        repchar(outfp," ",(80-28));
        fprintf(outfp, "世代数 %3d\n", (gen+1));
        fprintf(outfp,"个体  染色体编码");
        repchar(outfp," ",lchrom-5);
        fprintf(outfp,"适应度    父个体 交叉位置  ");
        fprintf(outfp,"染色体编码 ");
        repchar(outfp," ",lchrom-5);
        fprintf(outfp,"适应度\n");
        repchar(outfp,"-",80);
        skip(outfp,1);
        writepop(outfp);
        repchar(outfp,"-",80);
        skip(outfp,1);
     }
    fprintf(outfp,"第 %d 代统计: \n",gen);
    fprintf(outfp,"总交叉操作次数 = %d, 总变异操作数 = %d\n",ncross,nmutation);
    fprintf(outfp," 最小适应度:%f 最大适应度:%f  平均适应度 %f\n", min,max,avg);
    fprintf(outfp," 迄今发现最佳个体 =>  所在代数: %d  ", bestfit.generation);
    fprintf(outfp," 适应度:%f  染色体:", bestfit.fitness);
    writechrom((&bestfit)->chrom);
    fprintf(outfp," 对应的变量值: %f", bestfit.varible);
    skip(outfp,1);
    repchar(outfp,"-",80);
    skip(outfp,1);  
}
void writepop()
{
    struct individual *pind;
    int j;
    for(j=0; j<popsize; j++)
    {
        fprintf(outfp,"%3d)  ",j+1);
        /* 当前代个体 */
        pind = &(oldpop[j]);
        writechrom(pind->chrom);
        fprintf(outfp,"  %8f | ", pind->fitness);
        /* 新一代个体 */
        pind = &(newpop[j]);
        fprintf(outfp,"(%2d,%2d)   %2d   ",
        pind->parent[0], pind->parent[1], pind->xsite);
        writechrom(pind->chrom);
        fprintf(outfp,"  %8f\n", pind->fitness);
    }
}
void writechrom(chrom)           /* 输出染色体编码 */
unsigned *chrom;
{
    int j, k, stop;
    unsigned mask = 1, tmp;
    for(k = 0; k < chromsize; k++)
    {
        tmp = chrom[k];
        if(k == (chromsize-1))
            stop = lchrom - (k*(8*sizeof(unsigned)));
        else
            stop =8*sizeof(unsigned);
        for(j = 0; j < stop; j++)
        {
            if(tmp&mask)
                fprintf(outfp,"1");
            else
                fprintf(outfp,"0");
            tmp = tmp>>1;
        }
    }
}
void preselect()
{
    int j;
    sumfitness = 0;
    for(j = 0; j < popsize; j++) sumfitness += oldpop[j].fitness;
}
int select()                    /* 轮盘赌选择*/
{
    extern float randomperc();
    float sum, pick;
    int i;
    pick = randomperc();
    sum = 0;
    if(sumfitness != 0)
    {
        for(i = 0; (sum < pick) && (i < popsize); i++)
            sum += oldpop[i].fitness/sumfitness;
    }
    else
        i = rnd(1,popsize);
    return(i-1);
}
void statistics(pop)  /* 计算种群统计数据 */
struct individual *pop;
{
    int i, j;
    sumfitness = 0.0;
    min = pop[0].fitness;
    max = pop[0].fitness;
    /* 计算最大、最小和累计适应度 */
    for(j = 0; j < popsize; j++)
    {
        sumfitness = sumfitness + pop[j].fitness;            
        if(pop[j].fitness > max) max = pop[j].fitness;        
        if(pop[j].fitness < min) min = pop[j].fitness;         
        /* new global best-fit individual */
        if(pop[j].fitness > bestfit.fitness)
   {
    for(i = 0; i < chromsize; i++)
     bestfit.chrom[i]      = pop[j].chrom[i];
            bestfit.fitness    = pop[j].fitness;
            bestfit.varible   = pop[j].varible;  
            bestfit.generation = gen;
   }
      }
    /* 计算平均适应度 */
    avg = sumfitness/popsize;
}
void title()
{
  settextstyle(0,0,4);
  gprintf(110,15,4,0,"SGA Optimizer");
  setcolor(9);
  disp_hz24("基本遗传算法",220,60,25);
}
void repchar (outfp,ch,repcount)
FILE *outfp;
char *ch;
int repcount;
{
    int j;
    for (j = 1; j <= repcount; j++) fprintf(outfp,"%s", ch);
}
void skip(outfp,skipcount)
FILE *outfp;
int skipcount;
{
    int j;
    for (j = 1; j <= skipcount; j++) fprintf(outfp,"\n");
}
void objfunc(critter)            /* 计算适应度函数值 */
struct individual *critter;
{
    unsigned mask=1;
    unsigned bitpos;
    unsigned tp;
    double pow(), bitpow ;
    int j, k, stop;
    critter->varible = 0.0;
    for(k = 0; k < chromsize; k++)
    {
        if(k == (chromsize-1))
            stop = lchrom-(k*(8*sizeof(unsigned)));
        else
            stop =8*sizeof(unsigned);
        tp = critter->chrom[k];
        for(j = 0; j < stop; j++)
        {
            bitpos = j + (8*sizeof(unsigned))*k;
            if((tp&mask) == 1)
            {
                bitpow = pow(2.0,(double) bitpos);
                critter->varible = critter->varible + bitpow;
            }
            tp = tp>>1;
        }
    }
    critter->varible =-1+critter->varible*3/(pow(2.0,(double)lchrom)-1);
    critter->fitness =critter->varible*sin(critter->varible*10*atan(1)*4)+2.0;
}
void  mutation(unsigned *child)   /*变异操作*/
{
    int j, k, stop;
    unsigned mask, temp = 1;
    for(k = 0; k < chromsize; k++)
    {
        mask = 0;
        if(k == (chromsize-1))
            stop = lchrom - (k*(8*sizeof(unsigned)));
        else
            stop = 8*sizeof(unsigned);
        for(j = 0; j < stop; j++)
        {
            if(flip(pmutation))
            {
                mask = mask|(temp<<j);
                nmutation++;
            }
        }
        child[k] = child[k]^mask;
    }
}
int crossover (unsigned *parent1, unsigned *parent2, unsigned *child1, unsigned *child2)
/* 由两个父个体交叉产生两个子个体 */
{
    int j, jcross, k;
    unsigned mask, temp;
    if(flip(pcross))
    {
        jcross = rnd(1 ,(lchrom - 1));/* Cross between 1 and l-1 */
        ncross++;
        for(k = 1; k <= chromsize; k++)
        {
            if(jcross >= (k*(8*sizeof(unsigned))))
            {
                child1[k-1] = parent1[k-1];
                child2[k-1] = parent2[k-1];
            }
            else if((jcross < (k*(8*sizeof(unsigned)))) && (jcross > ((k-1)*(8*sizeof(unsigned)))))
            {
                mask = 1;
                for(j = 1; j <= (jcross-1-((k-1)*(8*sizeof(unsigned)))); j++)
                {
                    temp = 1;
                    mask = mask<<1;
                    mask = mask|temp;
                }
                child1[k-1] = (parent1[k-1]&mask)|(parent2[k-1]&(~mask));
                child2[k-1] = (parent1[k-1]&(~mask))|(parent2[k-1]&mask);
            }
            else
            {
                child1[k-1] = parent2[k-1];
                child2[k-1] = parent1[k-1];
            }
        }
    }
    else
    {
        for(k = 0; k < chromsize; k++)
        {
            child1[k] = parent1[k];
            child2[k] = parent2[k];
        }
        jcross = 0;
    }
    return(jcross);
}
void advance_random()          /* 产生55个随机数 */
{
    int j1;
    double new_random;
    for(j1 = 0; j1 < 24; j1++)
    {
        new_random = oldrand[j1] - oldrand[j1+31];
        if(new_random < 0.0) new_random = new_random + 1.0;
        oldrand[j1] = new_random;
    }
    for(j1 = 24; j1 < 55; j1++)
    {
        new_random = oldrand [j1] - oldrand [j1-24];
        if(new_random < 0.0) new_random = new_random + 1.0;
        oldrand[j1] = new_random;
    }
}
int flip(float prob)          /* 以一定概率产生0或1 */
{
    float randomperc();
    if(randomperc() <= prob)
        return(1);
    else
        return(0);
}
void randomize()            /* 设定随机数种子并初始化随机数发生器 */
{
    float randomseed;
    int j1;
    for(j1=0; j1<=54; j1++)
      oldrand[j1] = 0.0;
    jrand=0;
      do
        {
            setcolor(9);
              disp_hz16("随机数种子[0-1]:",100,330,20);
              gscanf(320,330,9,15,4,"%f", &randomseed);
         }
        while((randomseed < 0.0) || (randomseed > 1.0));
    warmup_random(randomseed);
}
double randomnormaldeviate()         /* 产生随机标准差 */
{
    double sqrt(), log(), sin(), cos();
    float randomperc();
    double t, rndx1;
    if(rndcalcflag)
    {   rndx1 = sqrt(- 2.0*log((double) randomperc()));
        t = 6.2831853072 * (double) randomperc();
        rndx2 = rndx1 * sin(t);
        rndcalcflag = 0;
        return(rndx1 * cos(t));
    }
    else
    {
        rndcalcflag = 1;
        return(rndx2);
    }
}
float randomperc()            /*与库函数random()作用相同, 产生[0,1]之间一个随机数 */
{
    jrand++;
    if(jrand >= 55)
    {
        jrand = 1;
        advance_random();
    }
    return((float) oldrand[jrand]);
}
int rnd(low, high)           /*在整数low和high之间产生一个随机整数*/
int low,high;
{
    int i;
    float randomperc();
    if(low >= high)
        i = low;
    else
    {
        i = (randomperc() * (high - low + 1)) + low;
        if(i > high) i = high;
    }
    return(i);
}

void warmup_random(float random_seed)       /* 初始化随机数发生器*/
{
    int j1, ii;
    double new_random, prev_random;
    oldrand[54] = random_seed;
    new_random = 0.000000001;
    prev_random = random_seed;
    for(j1 = 1 ; j1 <= 54; j1++)
    {
        ii = (21*j1)%54;
        oldrand[ii] = new_random;
        new_random = prev_random-new_random;
        if(new_random<0.0) new_random = new_random + 1.0;
        prev_random = oldrand[ii];
    }
    advance_random();
    advance_random();
    advance_random();
    jrand = 0;
}

main(argc,argv)           /*  主程序  */
int argc;
char *argv[];
{
    struct individual *temp;
    FILE   *fopen();
    void   title();
    char   *malloc();
        if((outfp = fopen(argv[1],"w")) == NULL)
        {
           fprintf(stderr,"Cannot open output file %s\n",argv[1]);
            exit(-1);
        }
     g_init();
     setcolor(9);
     title();
     disp_hz16("输入遗传算法执行次数(1-5):",100,120,20);
     gscanf(320,120,9,15,4,"%d",&maxruns);
     for(run=1; run<=maxruns; run++)
    {
        initialize();
        for(gen=0; gen<maxgen; gen++)
        {
         fprintf(outfp,"\n第 %d / %d 次运行: 当前代为 %d, 共 %d 代\n", run,maxruns,gen,maxgen);
            /* 产生新一代 */
            generation();
            /* 计算新一代种群的适应度统计数据 */
            statistics(newpop);
            /* 输出新一代统计数据 */
            report();
            temp = oldpop;
            oldpop = newpop;
            newpop = temp;
        }
        freeall();
    }
}
搜索更多相关主题的帖子: 算法 遗传 
2008-06-12 20:06
hujia358
Rank: 1
等 级:新手上路
帖 子:3
专家分:0
注 册:2008-6-12
收藏
得分:0 
提示是没有graph.c不知道怎么办,高手来帮帮忙啊
2008-06-12 20:07
快速回复:大家来看看这个遗传算法程序C
数据加载中...
 
   



关于我们 | 广告合作 | 编程中国 | 清除Cookies | TOP | 手机版

编程中国 版权所有,并保留所有权利。
Powered by Discuz, Processed in 0.035382 second(s), 8 queries.
Copyright©2004-2024, BCCN.NET, All Rights Reserved