废话比较多,大家先看看^^
noip05第3题
佳佳刚进高中,在军训的时候,由于佳佳吃苦耐劳,很快得到了教官的赏识,成为了“小教官”。在军训结束的那天晚上,佳佳被命令组织同学们进行篝火晚会。一共有n个同学,编号从1到n。一开始,同学们按照1,2,……,n的顺序坐成一圈,而实际上每个人都有两个最希望相邻的同学。如何下命令调整同学的次序,形成新的一个圈,使之符合同学们的意愿,成为摆在佳佳面前的一大难题。
◆
佳佳可向同学们下达命令,每一个命令的形式如下:
◆
(b1, b2,... bm -1, bm)
◆
这里m的值是由佳佳决定的,每次命令m的值都可以不同。这个命令的作用是移动编号是b1,b2,…… bm –1,bm的这m个同学的位置。要求b1换到b2的位置上,b2换到b3的位置上,……,要求bm换到b1的位置上。
执行每个命令都需要一些代价。我们假定如果一个命令要移动m个人的位置,那么这个命令的代价就是m。我们需要佳佳用最少的总代价实现同学们的意愿,你能帮助佳佳吗?
【输入文件】
输入文件fire.in的第一行是一个整数n(3 <= n <= 50000),表示一共有n个同学。其后n行每行包括两个不同的正整数,以一个空格隔开,分别表示编号是1的同学最希望相邻的两个同学的编号,编号是2的同学最希望相邻的两个同学的编号,……,编号是n的同学最希望相邻的两个同学的编号。
【输出文件】
输出文件fire.out包括一行,这一行只包含一个整数,为最小的总代价。如果无论怎么调整都不能符合每个同学的愿望,则输出-1。
【样例输入】
4
3 4
4 3
1 2
1 2
【样例输出】
2
【数据规模】
对于30%的数据,n <= 1000;
对于全部的数据,n <= 50000。
对于这道题目,我用一个数组模拟出了在可能完成任务的前提下最后排好序的情况如样例中我就恢复成了
1 3 2 4
然后就相当于按题目要求把它恢复成 1 2 3 4所需要的最少调动次数
有分析说是用冒泡排序记录交换次数,可我尝试过后发现那远大于最优答案
求教!