| 网站首页 | 业界新闻 | 小组 | 威客 | 人才 | 下载频道 | 博客 | 代码贴 | 在线编程 | 编程论坛
欢迎加入我们,一同切磋技术
用户名:   
 
密 码:  
共有 2458 人关注过本帖, 1 人收藏
标题:求助一道动态规划题目
只看楼主 加入收藏
RKNO
Rank: 1
等 级:新手上路
帖 子:20
专家分:0
注 册:2018-9-7
结帖率:80%
收藏(1)
已结贴  问题点数:20 回复次数:10 
求助一道动态规划题目
题目大意如下:(其他描述被我略过,只剩下核心问题)
有一堵长度为n块砖的墙,现在要把墙拆掉,每次拆掉最外围的砖块(不太好描述,下面有样例解释),
问要拆几次才可以把墙拆掉?

输入格式:
第1行输入墙的长度n(1≤n≤10^5)
第2行输入n个数Mi,分别对应每个单位长度墙的高度(1≤Mi≤10^9)

输出格式:
输出次数m

输入样例:
10
3 1 2 4 6 5 2 1 4 2

输出样例:
4

样例解释:
见图:
第1次拆掉的打叉
第2次拆掉的打三角
第3次拆掉的打井号
第4次拆掉的打圈
总共需要4次
图片附件: 游客没有浏览图片的权限,请 登录注册
搜索更多相关主题的帖子: 动态 长度 输入 格式 输出 
2018-11-22 18:56
rohalloway
Rank: 6Rank: 6
等 级:侠之大者
威 望:8
帖 子:97
专家分:405
注 册:2018-9-28
收藏
得分:2 
图片附件: 游客没有浏览图片的权限,请 登录注册


提供一个思路:
将输入的mi转成字符串,取mi中最大的值,比如示例输入的6

000111        000000        000000        000000        000000
000001        000000        000000        000000        000000
000011        000001        000000        000000        000000
001111        000011        000001        000000        000000
111111  ->    001111  ->    000011  ->    000001  ->    000000
011111        000011        000001        000000        000000
000011        000001        000000        000000        000000
000001        000000        000000        000000        000000
001111        000001        000000        000000        000000
000011        000000        000000        000000        000000

第一次输入完后就是第一列的样式
程序代码:
string IntToString(int n, int max)
{
    string str = "";
    for (int i = 0; i < max - n; i++)
    {
        str += "0";
    }

    for (int j = 0; j < n; j++)
    {
        str += "1";
    }

    return str;
}



程序代码:
int FindFirstOne(const string str)
{
    int i = 0;
    for (; i < str.length(); i++)
    {
        if (str[i] == '1')
            break;
    }
    return i;
}




FindFirstOne的返回值就是字符串中第一个为1的位置
最后根据FindFirstOne的返回值分别检查 str[i+1]、str[i-1]、下一行字符串str2[i]和上一行字符串str1[i]中的值是否为'0'

也就是分别判断上下左右是否为'0'

若为'0'则更新str[i] = '0';


方法比较笨,但是算是个思路吧。
2018-11-22 21:37
RKNO
Rank: 1
等 级:新手上路
帖 子:20
专家分:0
注 册:2018-9-7
收藏
得分:0 
回复 2楼 rohalloway
谢谢你提供的思路,毫无疑问,在数据规模较小的情况下可以这样写。
但是现在面临一个问题就是Mi能取到10的9次方,这个思路就不成立了。是吧?
2018-11-22 21:47
rohalloway
Rank: 6Rank: 6
等 级:侠之大者
威 望:8
帖 子:97
专家分:405
注 册:2018-9-28
收藏
得分:0 
以下是引用RKNO在2018-11-22 21:47:19的发言:

谢谢你提供的思路,毫无疑问,在数据规模较小的情况下可以这样写。
但是现在面临一个问题就是Mi能取到10的9次方,这个思路就不成立了。是吧?



这道题我研究了半天也没想出来可行的数学算法

所以就有了这个笨方法


你要是解决了把推理过程发上来分享一下

[此贴子已经被作者于2018-11-22 22:33编辑过]

2018-11-22 22:31
RKNO
Rank: 1
等 级:新手上路
帖 子:20
专家分:0
注 册:2018-9-7
收藏
得分:0 
回复 4楼 rohalloway
嗯,我也研究了半天,但是解决不了超时的问题,看到这个数据规模我人都傻了
2018-11-22 22:42
rjsp
Rank: 20Rank: 20Rank: 20Rank: 20Rank: 20
等 级:版主
威 望:528
帖 子:9025
专家分:54030
注 册:2011-1-18
收藏
得分:0 
才 10^5 个,我觉得数量不大,先写个最简单的,等有时间再仔细想想,今天比较忙

程序代码:
#include <cstdio>
#include <vector>
#include <algorithm>
using namespace std;

int main( void )
{
    unsigned wall[100000];
    unsigned n;

    // 输入
    scanf( "%u", &n );
    for( size_t i=0; i!=n; ++i )
        scanf( "%u", &wall[i] );

    // 处理
    unsigned max_count = 0;
    for( size_t i=0; i!=n; ++i )
    {
        unsigned count = wall[i];
        for( unsigned j=1; j<count; ++j )
        {
            unsigned left = i>=j ? wall[i-j] : 0 ;
            unsigned right = i+j<n ? wall[i+j] : 0;
            count = min( count, min(left,right)+j );
        }
        max_count = max( max_count, count );
    }
   

    // 输出
    printf( "%u\n", max_count );
}



[此贴子已经被作者于2018-11-23 13:34编辑过]

2018-11-23 11:56
RKNO
Rank: 1
等 级:新手上路
帖 子:20
专家分:0
注 册:2018-9-7
收藏
得分:0 
高手就是不一样。给你点个赞。我还没有细看你的代码,我今早也想了个方案,刚刚做出来提交过了,哈哈。。
以下附上我朴素的思路以及代码:

思路:
定义一个数组dp[],存放每一列最底下一块砖第几次被拆掉。
这个数值被2种情况影响
1、头顶上的砖被拆掉了,就轮到最后一块砖了
2、左边或右边一列最后一块砖被拆掉了,也轮到此列的砖被拆

一开始我们定义一个结构体a,保存输入数据,并保存下标(因为我下面用到了排序)
dp[]数组初始化为:min{当前列砖的数量,当前列到两个边界的最小距离};
为什么要取到边界的最小距离呢?因为每拆一次,边界那两列砖必定被拆掉。
然后对结构体数组排序。从砖数量少的列数开始处理,更新两边的状态,详细的处理看代码吧。
程序代码:
#include <cstdio>
#include <algorithm>
#define MAXN 100000
using namespace std;
struct Data
{
    long long bricks;//存放数据(每一列砖的高度)
    int index;//存放数组下标
};
struct Rule//按砖的高度,从小到大排序
{
    bool operator()(const Data &s1, const Data &s2)
    {
        if (s1.bricks < s2.bricks)
            return true;
        else
            return false;
    }
};
Data a[MAXN+10];
long long dp[MAXN+10];
int main(void)
{
    int n;
    long long i;
    scanf("%d", &n);//墙的长度
    for (i=1; i<=n; ++i)
    {
        scanf("%lld", &a[i].bricks);//输入每一类砖的高度
        dp[i] = a[i].bricks;
        a[i].index = i;//保存下标
    }
    //dp[]初始化
    for (i=1; i<=n/2; ++i)
        dp[i] = min(dp[i], i);
    for (i=n; i>n/2; --i)
        dp[i] = min(dp[i], n+1-i);
    //从小到大排序
    sort(a+1, a+n+1, Rule());
    int Max=0;
    for (i=1; i<=n; ++i)
    { 
        //更新左边的dp[]
        if (dp[a[i].index]+1<dp[a[i].index-1])
            dp[a[i].index-1] = dp[a[i].index]+1;
        //更新右边的dp[]
        if (dp[a[i].index]+1<dp[a[i].index+1])
            dp[a[i].index+1] = dp[a[i].index]+1;
    }
    //找出dp[]中最大的一个
    for (i=1; i<=n; ++i)
    {
        if (dp[i]>Max)
            Max = dp[i];
    }
    printf("%d", Max);//输出
    return 0;
}
2018-11-23 13:10
rjsp
Rank: 20Rank: 20Rank: 20Rank: 20Rank: 20
等 级:版主
威 望:528
帖 子:9025
专家分:54030
注 册:2011-1-18
收藏
得分:18 
回复 7楼 RKNO
我写了两个不同的方法,测试下来,效率差不多。
你的代码如果能封装成 unsigned foo1( unsigned wall[], unsigned n ) 这种形式的话,也可以放进来测试一下算法效率。

程序代码:
#include <cstdio>
#include <vector>
#include <algorithm>
using namespace std;

// 方法一:计算第i堵墙的墙跟到最近边缘的距离,返回其中的最大值
unsigned foo1( unsigned wall[], unsigned n )
{
    unsigned max_count = 0;
    for( size_t i=0; i!=n; ++i )
    {
        unsigned count = wall[i];
        for( unsigned j=1; j<count; ++j )
        {
            unsigned left = i>=j ? wall[i-j] : 0 ;
            unsigned right = i+j<n ? wall[i+j] : 0;
            count = min( count, min(left,right)+j );
        }
        max_count = max( max_count, count );
    }
    return max_count;
}

// 方法二:模拟拆砖过程,每次去掉最外层的砖
unsigned foo2( unsigned wall[], unsigned n )
{
    unsigned count = 0;
    for( ;; )
    {
        // 去掉两边的 0
        for( ; n!=0 && wall[0]==0; ++wall, --n );
        for( ; n!=0 && wall[n-1]==0; --n );
        if( n == 0 )
            break;

        // 腐蚀一次
        unsigned height = wall[0]; // 原先左边的高度
        for( unsigned i=1; i<n-1; ++i )
        {
            unsigned old = wall[i];
            wall[i] = min( min(height,wall[i+1]), max(wall[i],1u) - 1u );
            height = old;
        }
        wall[0] = 0;
        wall[n-1] = 0;
        ++count;
    }
    return count;
}

// 测试谁的效率高
#include <ctime>
void test( unsigned (*fun)(unsigned wall[], unsigned n) )
{
    time_t t0 = time(NULL);

    unsigned tmp = 0;
    for( unsigned a=0; a!=10; ++a )
    for( unsigned b=0; b!=10; ++b )
    for( unsigned c=0; c!=10; ++c )
    for( unsigned d=0; d!=10; ++d )
    for( unsigned e=0; e!=10; ++e )
    for( unsigned f=0; f!=10; ++f )
    for( unsigned g=0; g!=10; ++g )
    for( unsigned h=0; h!=10; ++h )
    for( unsigned i=0; i!=10; ++i )
    {
        unsigned wall[] = { a,b,c,d,e,f,g,h,i };
        tmp += fun( wall, sizeof(wall)/sizeof(*wall) );
    }

    time_t t1 = time(NULL);
    printf( "%u ", tmp ); // 防止编译器直接优化掉
    printf( "耗时: %lld\n", (long long)(t1-t0) );
}

int main( void )
{
    test( foo1 );
    test( foo2 );
}

2018-11-23 14:11
RKNO
Rank: 1
等 级:新手上路
帖 子:20
专家分:0
注 册:2018-9-7
收藏
得分:0 
妙啊,两种方法都很好。。只是为什么我的电脑跑不出结果。

[此贴子已经被作者于2018-11-23 19:49编辑过]

2018-11-23 19:45
rjsp
Rank: 20Rank: 20Rank: 20Rank: 20Rank: 20
等 级:版主
威 望:528
帖 子:9025
专家分:54030
注 册:2011-1-18
收藏
得分:0 
回复 9楼 RKNO
我用十多年的破电脑测试,大约2分钟运行完毕
2018-11-24 10:24
快速回复:求助一道动态规划题目
数据加载中...
 
   



关于我们 | 广告合作 | 编程中国 | 清除Cookies | TOP | 手机版

编程中国 版权所有,并保留所有权利。
Powered by Discuz, Processed in 0.042081 second(s), 9 queries.
Copyright©2004-2024, BCCN.NET, All Rights Reserved