| 网站首页 | 业界新闻 | 小组 | 威客 | 人才 | 下载频道 | 博客 | 代码贴 | 在线编程 | 编程论坛
欢迎加入我们,一同切磋技术
用户名:   
 
密 码:  
共有 495 人关注过本帖
标题:关于重言式判别的问题,我找来了一个现成的程序,可是读不懂,主要是二叉树 ...
只看楼主 加入收藏
一期一会cx
Rank: 1
等 级:新手上路
帖 子:7
专家分:0
注 册:2014-11-17
结帖率:50%
收藏
 问题点数:0 回复次数:1 
关于重言式判别的问题,我找来了一个现成的程序,可是读不懂,主要是二叉树怎么实现
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

typedef struct DutyElement
{
     char data;
     int duty;
 }DutyElement;
 
DutyElement DutyArray[100];          //定义加权数组

typedef struct BiTNode
{
     char data;
     struct BiTNode *lchild, *rchild;
}BiTNode, *BiTree;
 
void InitDutyArray(char *s, int n)         //根据输入的序列初始化加权数组
{
     int i, j;
     for (i = 0; i < n; i++)
     {
              DutyArray[i].data = s[i];
          switch (DutyArray[i].data)          //分别赋权值
           {
          case '~':
             DutyArray[i].duty = 3; break;
         case '&':
             DutyArray[i].duty = 2; break;
         case '|':
             DutyArray[i].duty = 1; break;
         default:
             DutyArray[i].duty = 0; break;   
         }
     }
     for (i = 0; i < n; i++)
     {
         if (DutyArray[i].data == '(')        //是左括号的话则对运算符进行加权操作
          {
             for (j = i; j < n; j++)
             {
                 if (DutyArray[j].duty != 0)
                     DutyArray[j].duty += 5;
             }
         }
         else
         {
             if (DutyArray[i].data == ')')          //右括号的话对运算符进行减权操作
              {
                 for (j = i; j < n; j++)
                 {
                     if (DutyArray[j].duty != 0)
                         DutyArray[j].duty -= 5;
                 }
             }
         }
     }
 }
 
  int SearchMinDutyOperator(int a, int b)          //寻找权值最小的运算符,即为二叉树的根节点
  {
     int i, n = a, duty = 1000;
     for (i = a; i < b + 1; i++)
     {
         if (DutyArray[i].duty > 0 && DutyArray[i].duty < duty)
        {
             n = i;
             duty = DutyArray[i].duty;
         }
     }
     return n;
 }
 
  int ParenthesesCloesed(int a, int b)        //判断序列是否在最外层有一对括号
  {
     int i, n = 0;
     for (i = a; i <= b; i++)
     {
         if (DutyArray[i].data == '(')
             n++;
         if (DutyArray[i].data == ')')
             n--;
         if (n == 0)
             break;
     }
     if (i == b)
         return 1;
     else
         return 0;
 }
 
 BiTree Create(int a, int b)                //根据加权数组创建二叉树
  {
     BiTree p;
     if (DutyArray[a].data == '(' && DutyArray[b].data == ')' && ParenthesesCloesed(a, b) == 1)  //去括号
     {
         a += 1;
         b -= 1;
     }
     if (a > b)
         p = NULL;
     else
     {
         if (a == b)
         {
             p = (BiTNode *)malloc(sizeof(BiTNode));
             p->data = DutyArray[a].data;
             p->lchild = NULL;
             p->rchild = NULL;
        }
         else
         {
             int n;
             n = SearchMinDutyOperator(a, b);
             p = (BiTNode *)malloc(sizeof(BiTNode));
             p->data = DutyArray[n].data;
             p->lchild = Create(a, n - 1);
            p->rchild = Create(n + 1, b);
         }
     }
     return p;
 }
 
 void AssignValue(BiTree T, char letter, char binary)      //递归为对应的字母赋二进制字符
 {
     if (T)
     {
         if (T->data == letter)
             T->data = binary;
        AssignValue(T->lchild, letter, binary);
        AssignValue(T->rchild, letter, binary);
    }
 }
 
 int Calculate(BiTree T)                     //递归计算二进制字符二叉树
 {
     switch (T->data)
     {
     case '0':
         return 0;
     case '1':
         return 1;
     case '~':
         return !Calculate(T->rchild);
     case '&':
         return (Calculate(T->lchild) & Calculate(T->rchild));
     case '|':
         return (Calculate(T->lchild) | Calculate(T->rchild));
    }
 }
 
 int main()
 {
     BiTree T;
   int m = 0, n, i, j, k, length = 0, strlength, num = 1, flag;
     char value[20] = {0};
     char s[100] = {0};
    char c, *str;
     str = (char *)malloc(sizeof(char) * 20);
     for (i = 0; i < 20; i++)
     {
         *(str + i) = 0;
     }
     c = getchar();                    
     i = 0;
     while (c != '\n')
     {
         if (c != ' ')
         {
             s[i] = c;
             i++;
         }
         c = getchar();
     }
     for (i = 0; i < 100; i++)
     {
         if (s[i] == 0)
         {
             n = i;                      //n为输入序列的长度
             break;
         }
     }
     for (i = 0; i < n; i++)
     {
         if (strchr(s, 'A' + i) != NULL)
             length++;
         else
             break;
     }
     length = i;
     InitDutyArray(s, n);                 //初始化加权数组   
     T = Create(0, n - 1);
     for (i = 0; i < length; i++)
     {
         AssignValue(T, 'A' + i, '0');
     }
     flag = Calculate(T);
     for (i = 0; i < length; i++)
     {
         num *= 2;
     }
     for (i = 0; i < num; i++)
     {
         T = Create(0, n - 1);         //由于每运算一次会将原来的二叉树中的变元改变,所以得重新构造
         itoa(i, str, 2);
         strlength = strlen(str);
         for (j = 0; j < length; j++)
         {   
             if (strlength - j - 1 >= 0)
                 value[length - j - 1] = *(str + strlength - 1 - j);
             else
                 value[length - j - 1] = '0';
            
         }
         for (k = 0; k < length; k++)
         {
             AssignValue(T, 'A' + k, value[k]);
         }
         if (Calculate(T) != flag)
         {
             printf("Satisfactible\n");
             break;
         }
         else
         {
             if (i == num - 1 && flag == 1)
             {
                 printf("True forever\n");
                 return 0;
             }
             if (i == num - 1 && flag == 0)
             {
                 printf("False forever\n");
                 return 1;
             }
         }
     }
     for (i = 0; i < length; i++)
     {
         printf("%c ", 'A' + i);
     }
     printf("\n");
     c = getchar();                        //输入对各字符的赋值,保存在value数组中
     i = 0;
     while (c != ';')
     {
         if (c != ',')
         {
             value[i] = c;
             i++;
         }
         c = getchar();
     }
     T = Create(0, n - 1);            //重新构造二叉树
     for (i = 0; i < length; i++)
     {
         AssignValue(T, 'A' + i, value[i]);
     }
     printf("The result is %d\n", Calculate(T));
    return 0;
 }
搜索更多相关主题的帖子: include 二叉树 
2014-11-26 15:53
一期一会cx
Rank: 1
等 级:新手上路
帖 子:7
专家分:0
注 册:2014-11-17
收藏
得分:0 
能不能有哪一位能画出图来上图让我看看是怎么实现的,我理解不了这个算法
2014-11-26 15:56
快速回复:关于重言式判别的问题,我找来了一个现成的程序,可是读不懂,主要是二 ...
数据加载中...
 
   



关于我们 | 广告合作 | 编程中国 | 清除Cookies | TOP | 手机版

编程中国 版权所有,并保留所有权利。
Powered by Discuz, Processed in 0.024129 second(s), 7 queries.
Copyright©2004-2025, BCCN.NET, All Rights Reserved