5、数组和指针的关系
数组的数组名其实可以看作一个指针。看下例:
例九:
intarray[10]={0,1,2,3,4,5,6,7,8,9},value;
value=array[0]; //也可写成:value=*array;
value=array[3]; //也可写成:value=*(array+3);
value=array[4]; //也可写成:value=*(array+4);
上例中,一般而言数组名array 代表数组本身,类型是int[10],但如
果把array 看做指针的话,它指向数组的第0 个单元,类型是int* ,
所指向的类型是数组单元的类型即int。因此*array 等于0 就一点也不
奇怪了。同理,array+3 是一个指向数组第3 个单元的指针,所以
*(array+3)等于3。其它依此类推。
例十:
char *str[3]={
"Hello,thisisasample!",
"Hi,goodmorning.",
"Helloworld"
};
chars[80];
strcpy(s,str[0]); //也可写成strcpy(s,*str);
strcpy(s,str[1]); //也可写成strcpy(s,*(str+1));
strcpy(s,str[2]); //也可写成strcpy(s,*(str+2));
上例中,str 是一个三单元的数组,该数组的每个单元都是一个指针,
这些指针各指向一个字符串。把指针数组名str 当作一个指针的话,它
指向数组的第0 号单元,它的类型是char **,它指向的类型是char *。
*str 也是一个指针,它的类型是char *,它所指向的类型是char,它
指向的地址是字符串"Hello,thisisasample!"的第一个字符的地址,即
'H'的地址。注意:字符串相当于是一个数组,在内存中以数组的形式储
存,只不过字符串是一个数组常量,内容不可改变,且只能是右值.如果
看成指针的话,他即是常量指针,也是指针常量.
str+1 也是一个指针,它指向数组的第1 号单元,它的类型是char**,
它指向的类型是char*。
*(str+1)也是一个指针,它的类型是char*,它所指向的类型是char,
它指向"Hi,goodmorning."的第一个字符'H'
下面总结一下数组的数组名(数组中储存的也是数组)的问题:
声明了一个数组TYPE array[n],则数组名称array 就有了两重含义:
第一,它代表整个数组,它的类型是TYPE[n];第二,它是一个常量
指针,该指针的类型是TYPE*,该指针指向的类型是TYPE,也就是数组
单元的类型,该指针指向的内存区就是数组第0 号单元,该指针自己占
有单独的内存区,注意它和数组第0 号单元占据的内存区是不同的。该
指针的值是不能修改的,即类似array++的表达式是错误的。
在不同的表达式中数组名array 可以扮演不同的角色。
在表达式sizeof(array)中,数组名array 代表数组本身,故这时
sizeof 函数测出的是整个数组的大小。
在表达式*array 中,array 扮演的是指针,因此这个表达式的结果就是
数组第0 号单元的值。sizeof(*array)测出的是数组单元的大小。
表达式array+n(其中n=0,1,2,.....)中,array 扮演的是指
针,故array+n 的结果是一个指针,它的类型是TYPE *,它指向的类
型是TYPE,它指向数组第n 号单元。故sizeof(array+n)测出的是指针
类型的大小。在32 位程序中结果是4
例十一:
int array[10];
int (*ptr)[10];
ptr=&array;:
上例中ptr 是一个指针,它的类型是int(*)[10],他指向的类型是
int[10] ,我们用整个数组的首地址来初始化它。在语句ptr=&array
中,array 代表数组本身。
本节中提到了函数sizeof(),那么我来问一问,sizeof(指针名称)
测出的究竟是指针自身类型的大小呢还是指针所指向的类型的大小?
答案是前者。例如:
int(*ptr)[10];
则在32 位程序中,有:
sizeof(int(*)[10])==4
sizeof(int[10])==40
sizeof(ptr)==4
实际上,sizeof(对象)测出的都是对象自身的类型的大小,而不是别的
什么类型的大小。
6、指针和结构类型的关系
可以声明一个指向结构类型对象的指针。
例十二:
struct MyStruct
{
int a;
int b;
int c;
};
struct MyStruct ss={20,30,40};
//声明了结构对象ss,并把ss 的成员初始化为20,30 和40。
struct MyStruct *ptr=&ss;
//声明了一个指向结构对象ss 的指针。它的类型是
//MyStruct *,它指向的类型是MyStruct。
int *pstr=(int*)&ss;
//声明了一个指向结构对象ss 的指针。但是pstr 和
//它被指向的类型ptr 是不同的。
请问怎样通过指针ptr 来访问ss 的三个成员变量?
答案:
ptr->a; //指向运算符,或者可以这们(*ptr).a,建议使用前者
ptr->b;
ptr->c;
又请问怎样通过指针pstr 来访问ss 的三个成员变量?
答案:
*pstr; //访问了ss 的成员a。
*(pstr+1); //访问了ss 的成员b。
*(pstr+2) //访问了ss 的成员c。
虽然我在我的MSVC++6.0 上调式过上述代码,但是要知道,这样使
用pstr 来访问结构成员是不正规的,为了说明为什么不正规,让我们
看看怎样通过指针来访问数组的各个单元: (将结构体换成数组)
例十三:
int array[3]={35,56,37};
int *pa=array;
通过指针pa 访问数组array 的三个单元的方法是:
*pa; //访问了第0 号单元
*(pa+1); //访问了第1 号单元
*(pa+2); //访问了第2 号单元
从格式上看倒是与通过指针访问结构成员的不正规方法的格式一
样。
所有的C/C++编译器在排列数组的单元时,总是把各个数组单元存
放在连续的存储区里,单元和单元之间没有空隙。但在存放结构对象的
各个成员时,在某种编译环境下,可能会需要字对齐或双字对齐或者是
别的什么对齐,需要在相邻两个成员之间加若干个"填充字节",这就导
致各个成员之间可能会有若干个字节的空隙。
所以,在例十二中,即使*pstr 访问到了结构对象ss 的第一个成
员变量a,也不能保证*(pstr+1)就一定能访问到结构成员b。因为成员
a 和成员b 之间可能会有若干填充字节,说不定*(pstr+1)就正好访问
到了这些填充字节呢。这也证明了指针的灵活性。要是你的目的就是想
看看各个结构成员之间到底有没有填充字节,嘿,这倒是个不错的方法。
不过指针访问结构成员的正确方法应该是象例十二中使用指针ptr 的
方法。