| 网站首页 | 业界新闻 | 小组 | 威客 | 人才 | 下载频道 | 博客 | 代码贴 | 在线编程 | 编程论坛
欢迎加入我们,一同切磋技术
用户名:   
 
密 码:  
共有 2243 人关注过本帖
标题:矩阵加减运算,求公式,讲解很长,耐心看下去。不甚感激。
只看楼主 加入收藏
pangding
Rank: 19Rank: 19Rank: 19Rank: 19Rank: 19Rank: 19
来 自:北京
等 级:贵宾
威 望:94
帖 子:6784
专家分:16751
注 册:2008-12-20
收藏
得分:0 
你是要求全部可能的公式是吧?
那这个的计算量我感觉还是比较大的,因为我觉得能满足的公式应该非常多。
这个游戏的规则比较自由,对结果的限制又比较少。能够推理的地方不多,感觉就是用暴力穷举公式。一个题有几千个公式匹配也很正常。

我觉得 寒风 给的那个程序就是个很好的参考了。楼主从中没能获得点启发,改进自己曾经写的程序吗?


[ 本帖最后由 pangding 于 2011-5-5 16:36 编辑 ]
2011-05-05 16:30
qq1023569223
Rank: 19Rank: 19Rank: 19Rank: 19Rank: 19Rank: 19
来 自:湖南科技大学
等 级:贵宾
威 望:26
帖 子:2753
专家分:13404
注 册:2010-12-22
收藏
得分:0 
估计二楼写那程序花了不少时间吧,我硬是看不下去了,LZ说得不太明白!

   唯实惟新 至诚致志
2011-05-07 23:30
pangding
Rank: 19Rank: 19Rank: 19Rank: 19Rank: 19Rank: 19
来 自:北京
等 级:贵宾
威 望:94
帖 子:6784
专家分:16751
注 册:2008-12-20
收藏
得分:0 
回复 楼主 a396693980
写了一个,不知道能不能用。
它应该能列出所有的公式。但不是太智能。很多重了的公式,可能它并不去过滤。

比如
数字一 + 数字二 + 2

数字二 + 数字一 + 2
它会认为是两个不一样的公式,虽然逻辑应该是一样的。

代码如下:
程序代码:
#include <stdio.h>

int a[3][7];

int formula1( int a, int trt, int opt, int n )
{
    int res;

    switch (trt) {
        case 1: a %= 10; break;
        case 2: a /= 10; break;
        case 3: a = a/10 + a%10; break;
        case 4: /* a = a; */ break;
        default: return -1;
    }

    switch (opt) {
        case 0: res = a; break;
        case 1: res = a + n; break;
        case 2: res = a - n; break;
    }

    return res;     // No invalid formula can be generate.
}

int formula2( int a, int trta, int b, int trtb, int opt, int n )
{
    int res;
    int cplus = 0, cminus = 0;

    switch (trta) {
        case 1: a %= 10; break;
        case 2: a /= 10; break;
        case 3: a = a/10 + a%10;
                ++cplus; break;
        case 4: /* a = a; */ break;
        default: return -1;
    }

    switch (trtb) {
        case 1: b %= 10; break;
        case 2: b /= 10; break;
        case 3: b = b/10 + b%10;
                ++cplus; break;
        case 4: /* b = b; */ break;
        case 5: b = -(b%10);

                ++cminus; --cplus; break;
        case 6: b = -(b/10);
                ++cminus; --cplus; break;
        case 7: b = -b;
                ++cminus; --cplus; break;
        default: return -1;
    }

    switch (opt) {
        case 0: res =  a + b;
                ++cplus; break;
        case 1: res = a + b + n;
                cplus += 2; break;
        case 2: res = a + b - n;
                ++cplus, ++cminus; break;
    }
   

    return (cplus <=3 && cminus <= 1) ? res : -1;
}

int formula3( int a, int trta, int b, int trtb, int c, int trtc, int opt, int n )
{
    int res;
    int cplus = 0, cminus = 0;

    switch (trta) {
        case 1: a %= 10; break;
        case 2: a /= 10; break;
        case 3: a = a/10 + a%10;
                ++cplus;break;
        case 4: /* a = a; */ break;
        default: return -1;
    }

    switch (trtb) {
        case 1: b %= 10; break;
        case 2: b /= 10; break;
        case 3: b = b/10 + b%10;
                ++cplus; break;
        case 4: /* b = b; */ break;
        case 5: b = -(b%10);

                ++cminus; --cplus; break;
        case 6: b = -(b/10);
                ++cminus; --cplus; break;
        case 7: b = -b;
                ++cminus; --cplus; break;
        default: return -1;
    }

    switch (trtc) {
        case 1: c %= 10; break;
        case 2: c /= 10; break;
        case 3: c = c/10 + c%10;
                ++cplus; break;
        case 4: /* c = c; */ break;
        case 5: c = -(c%10);

                ++cminus; --cplus; break;
        case 6: c = -(c/10);
                ++cminus; --cplus; break;
        case 7: c = -c;
                ++cminus; --cplus; break;
        default: return -1;
    }

    switch (opt) {
        case 0: res = a + b + c;
                cplus += 2; break;
        case 1: res = a + b + c + n;
                cplus += 3; break;
        case 2: res = a + b + c - n;
                cplus += 2, ++cminus; break;
    }
   

    return (cplus <=3 && cminus <= 1) ? res : -1;
}

int formula4( int a, int trta, int b, int trtb,
                int c, int trtc, int d, int trtd, int opt, int n )
{
    int res;
    int cplus = 0, cminus = 0;

    switch (trta) {
        case 1: a %= 10; break;
        case 2: a /= 10; break;
        case 3: a = a/10 + a%10;
                ++cplus;break;
        case 4: /* a = a; */ break;
        default: return -1;
    }

    switch (trtb) {
        case 1: b %= 10; break;
        case 2: b /= 10; break;
        case 3: b = b/10 + b%10;
                ++cplus; break;
        case 4: /* b = b; */ break;
        case 5: b = -(b%10);

                ++cminus; --cplus; break;
        case 6: b = -(b/10);
                ++cminus; --cplus; break;
        case 7: b = -b;
                ++cminus; --cplus; break;
        default: return -1;
    }

    switch (trtc) {
        case 1: c %= 10; break;
        case 2: c /= 10; break;
        case 3: c = c/10 + c%10;
                ++cplus; break;
        case 4: /* c = c; */ break;
        case 5: c = -(c%10);
                ++cminus; --cplus; break;
        case 6: c = -(c/10);
                ++cminus; --cplus; break;
        case 7: c = -c;
                ++cminus; --cplus; break;
        default: return -1;
    }

    switch (trtd) {
        case 1: d %= 10; break;
        case 2: d /= 10; break;
        case 3: d = d/10 + d%10;
                ++cplus; break;
        case 4: /* d = d; */ break;
        case 5: d = -(d%10);
                ++cminus; --cplus; break;
        case 6: d = -(d/10);
                ++cminus; --cplus; break;
        case 7: d = -d;
                ++cminus; --cplus; break;
        default: return -1;
    }

    switch (opt) {
        case 0: res = a + b + c + d;
                cplus += 3; break;
        case 1: res = a + b + c + d + n;
                cplus += 4; break;
        case 2: res = a + b + c + d - n;
                cplus += 3, ++cminus; break;
    }
   

    return (cplus <=3 && cminus <= 1) ? res : -1;
}

int check(a1, a2)
{
    return (a1%12 == a[1][6]%12)
        && (a2%12 == a[2][6]%12);
}

const char st[] = { '@', 'l', 'h', 's', 'n', 'l', 'h', 'n', '@' };
const char sp[] = { '#', '+', '-', '@' };

void showf1(int i, int t, int p, int n)
{
    if (p != 0)
        printf("Formula: %d%c %c %d\n", i+1, st[t], sp[p], n);
}

void showf2(int i, int t, int j, int tt, int p, int n)
{
    printf("Formula: %d%c %c %d%c", i+1, st[t], (tt<5 ? '+' : '-'), j+1, st[tt]);

    if (p != 0) printf(" %c %d\n", sp[p], n);
    else printf("\n");
}

void showf3(int i, int t, int j, int tt, int k, int t3, int p, int n)
{
    printf("Formula: %d%c %c %d%c %c %d%c", i+1, st[t],
            (tt<5 ? '+' : '-'), j+1, st[tt], (t3<5 ? '+' : '-'), k+1, st[t3]);

    if (p != 0) printf(" %c %d\n", sp[p], n);
    else printf("\n");
}

void showf4(int i, int t, int j, int tt, int k, int t3,
        int l, int t4, int p, int n)
{
    printf("Formula: %d%c %c %d%c %c %d%c %c %d%c", i+1, st[t],
            (tt<5 ? '+' : '-'), j+1, st[tt], (t3<5 ? '+' : '-'), k+1, st[t3],
            (t4<5 ? '+' : '-'), l+1, st[t4]);

    if (p != 0) printf(" %c %d\n", sp[p], n);
    else printf("\n");
}

int generate()
{
    int count = 0;

    int i, t, p, n;
    for (i = 0; i < 7; i++)
    for (t = 1; t <= 4; t++)
    for (p = 0; p <= 2; p++)
    for (n = 1; n <= 10; n++)
    {
        if ( check(formula1(a[0][i], t, p, n), formula1(a[1][i], t, p, n)) )
        { showf1(i, t, p, n); ++count; }
        if (p == 0) break;
    }

    int j, tt;
    for (i = 0; i < 7; i++)
    for (t = 1; t <= 4; t++)
    for (j = 0; j < 7; j++)
    for (tt = 1; tt <= 7; tt++)
    for (p = 0; p <= 2; p++)
    for (n = 1; n <= 10; n++)
    {
        if ( check(formula2(a[0][i], t, a[0][j], tt, p, n),
                   formula2(a[1][i], t, a[1][j], tt,  p, n)) )
        { showf2(i, t, j, tt, p, n); ++count; }
        if (p == 0) break;
    }

    int k, t3;
    for (i = 0; i < 7; i++)
    for (t = 1; t <= 4; t++)
    for (j = 0; j < 7; j++)
    for (tt = 1; tt <= 7; tt++)
    for (k = 0; k < 7; k++)
    for (t3 = 1; t3 <= 7; t3++)
    for (p = 0; p <= 2; p++)
    for (n = 1; n <= 10; n++)
    {
        if ( check(formula3(a[0][i], t, a[0][j], tt, a[0][k], t3, p, n),
                   formula3(a[1][i], t, a[1][j], tt, a[1][k], t3, p, n)) )
        { showf3(i, t, j, tt, k, t3, p, n); ++count; }
        if (p == 0) break;
    }

    int l, t4;
    for (i = 0; i < 7; i++)
    for (t = 1; t <= 4; t++)
    for (j = 0; j < 7; j++)
    for (tt = 1; tt <= 7; tt++)
    for (k = 0; k < 7; k++)
    for (t3 = 1; t3 <= 7; t3++)
    for (l = 0; l < 7; l++)
    for (t4 = 1; t4 <= 7; t4++)
    for (p = 0; p <= 2; p++)
    for (n = 1; n <= 10; n++)
    {
        if ( check(formula4(a[0][i], t, a[0][j], tt, a[0][k], t3, a[0][l], t4, p, n),
                   formula4(a[1][i], t, a[1][j], tt, a[1][k], t3, a[1][l], t4, p, n)) )
        { showf4(i, t, j, tt, k, t3, l, t4, p, n); ++count; }
        if (p == 0) break;
    }

    return count;
}

void get()
{
    int i, j;
    for(i = 0; i < 3; i++)
        for(j = 0; j < 7; j++)
            scanf("%d", &a[i][j]);
}

int main(int argc, char *argv[])
{
    int count;

    get();
    count = generate();

    printf("======> total count: %d <======\n", count);

    return 0;
}

2011-05-08 17:04
pangding
Rank: 19Rank: 19Rank: 19Rank: 19Rank: 19Rank: 19
来 自:北京
等 级:贵宾
威 望:94
帖 子:6784
专家分:16751
注 册:2008-12-20
收藏
得分:0 
对于这道题:
33 09 08 49 13 17 30
34 29 02 25 16 07 10
37 33 23 04 47 15 22

它的输出是下面这样的(一共找到了 65491 个满足的公式,我只列出了一部分):
Formula: 1h + 7
Formula: 2l + 1
Formula: 3h + 10
Formula: 4n + 9
Formula: 4n - 3
Formula: 5h + 9
Formula: 6l + 3
Formula: 7l + 10
Formula: 1l - 1l + 10
Formula: 1l + 6h + 6
Formula: 1l + 6s - 1
Formula: 1h + 1h + 4
Formula: 1h - 1h + 10
Formula: 1h + 2l + 10
Formula: 1h + 2l - 2
Formula: 1h + 3h + 7
Formula: 1h - 3h + 7
Formula: 1h + 4n + 6
Formula: 1h + 4n - 6
Formula: 1h + 5h + 6
Formula: 1h - 5h + 8
Formula: 1h + 6l
Formula: 1h + 7l + 7
Formula: 1h - 7l + 7
Formula: 1s - 1l + 7
Formula: 1s + 6h + 3
Formula: 1s + 6s - 4
Formula: 1n - 1l + 4
Formula: 1n - 1n + 10
Formula: 1n + 6h
Formula: 1n + 6s + 5
Formula: 1n + 6s - 7
Formula: 2l + 1h + 10
Formula: 2l + 1h - 2
Formula: 2l - 1h + 4
Formula: 2l + 2l + 4
Formula: 2l + 2l - 8
Formula: 2l - 2l + 10
Formula: 2l + 3h + 1
Formula: 2l - 3h + 1
Formula: 2l + 4n
Formula: 2l + 5h
Formula: 2l - 5h + 2
Formula: 2l + 6l + 6
Formula: 2l + 6l - 6
Formula: 2l - 6l + 8
Formula: 2l + 7l + 1
Formula: 2l - 7l + 1
Formula: 2h - 2h + 10
Formula: 2h + 4h + 6
Formula: 2h + 7h + 7
Formula: 2h + 7s + 7
Formula: 2s - 2h + 1
Formula: 2s + 4h + 9
Formula: 2s + 4h - 3
Formula: 2s + 7h + 10
Formula: 2s + 7h - 2
Formula: 2s + 7s - 2
Formula: 2n - 2n + 10
Formula: 2n - 4l + 10
Formula: 2n + 7n + 7
Formula: 2n + 7n - 5
Formula: 3l + 3l + 6
Formula: 3l + 3s + 6
Formula: 3l + 3n + 6
Formula: 3l - 3l + 10
Formula: 3l - 3n + 10
Formula: 3l + 4s + 1
Formula: 3h + 1h + 7
Formula: 3h + 2l + 1
Formula: 3h + 3h + 10
Formula: 3h - 3h + 10
Formula: 3h + 4n + 9
Formula: 3h + 4n - 3
Formula: 3h + 5h + 9
Formula: 3h + 6l + 3
Formula: 3h + 7l + 10
Formula: 3h - 7l + 10
Formula: 3s + 3l + 6
Formula: 3s + 3n + 6
Formula: 3s - 3l + 10
Formula: 3s - 3n + 10
Formula: 3n + 3l + 6
Formula: 3n + 3s + 6
Formula: 3n + 3n + 6
Formula: 3n - 3l + 10
Formula: 3n - 3n + 10
Formula: 3n + 4s + 1
Formula: 4l - 4l + 10
Formula: 4l + 7n + 7
Formula: 4l + 7n - 5
Formula: 4h + 2h + 6
Formula: 4h + 2s + 9
Formula: 4h + 2s - 3
Formula: 4h - 4h + 10
Formula: 4h + 6n + 1
Formula: 4h - 7h + 9
Formula: 4s + 3l + 1
Formula: 4s + 3n + 1
Formula: 4s - 3l + 5
Formula: 4s - 3n + 5
Formula: 4s + 4s - 4
Formula: 4n + 1h + 6
Formula: 4n + 1h - 6
Formula: 4n - 1h
Formula: 4n + 2l
Formula: 4n - 2l + 6
Formula: 4n + 3h + 9
Formula: 4n + 3h - 3
Formula: 4n - 3h + 9
Formula: 4n + 4n + 8
Formula: 4n + 4n - 4
Formula: 4n - 4n + 10
Formula: 4n + 5h + 8
Formula: 4n + 5h - 4
Formula: 4n - 5h + 10
Formula: 4n + 6l + 2
Formula: 4n + 6l - 10
Formula: 4n - 6l + 4
Formula: 4n + 7l + 9
Formula: 4n + 7l - 3
Formula: 4n - 7l + 9
Formula: 5l - 5l + 10
Formula: 5h + 1h + 6
Formula: 5h + 2l
Formula: 5h + 3h + 9
Formula: 5h - 3h + 9
Formula: 5h + 4n + 8
Formula: 5h + 4n - 4
Formula: 5h + 5h + 8
Formula: 5h - 5h + 10
Formula: 5h + 6l + 2
Formula: 5h + 7l + 9
Formula: 5h - 7l + 9
Formula: 5s - 5l + 9
Formula: 5n - 5l
Formula: 5n - 5n + 10
Formula: 6l + 1h
Formula: 6l - 1h + 6
Formula: 6l + 2l + 6
Formula: 6l + 2l - 6
Formula: 6l + 3h + 3
Formula: 6l - 3h + 3
Formula: 6l + 4n + 2
Formula: 6l + 4n - 10
Formula: 6l + 5h + 2
Formula: 6l - 5h + 4
Formula: 6l + 6l + 8
Formula: 6l + 6l - 4
Formula: 6l - 6l + 10
Formula: 6l + 7l + 3
Formula: 6l - 7l + 3
Formula: 6h + 1l + 6
Formula: 6h + 1s + 3
Formula: 6h + 1n
Formula: 6h - 6h + 10
Formula: 6s + 1l - 1
Formula: 6s + 1s - 4
Formula: 6s + 1n + 5
Formula: 6s + 1n - 7
Formula: 6s - 6h + 3
Formula: 6n - 2h + 5
。。。。。。



[ 本帖最后由 pangding 于 2011-5-8 17:13 编辑 ]
2011-05-08 17:07
pangding
Rank: 19Rank: 19Rank: 19Rank: 19Rank: 19Rank: 19
来 自:北京
等 级:贵宾
威 望:94
帖 子:6784
专家分:16751
注 册:2008-12-20
收藏
得分:0 
我解释一下意思。
1l, 1h, 1s, 1n
分别表示
一数字尾,一数字头,一数字合,和一数字本身。

这样,输出中的第二答案
2l + 1
就是楼主例子里的《二数字尾加一》

而且我这 6万 多个答案里,并没有排序后在处理。排序完了,恐怕还得有几万个。我想就算了。
如果楼主非常想要排序的,可以手动排一下,构造一道新题,重新跑一下程序,我就不编码了。
2011-05-08 17:10
pangding
Rank: 19Rank: 19Rank: 19Rank: 19Rank: 19Rank: 19
来 自:北京
等 级:贵宾
威 望:94
帖 子:6784
专家分:16751
注 册:2008-12-20
收藏
得分:0 
由于我最近比较,这个程序又比较繁锁。所以请了我的一个同学帮我写的这个代码,我只是提点了一下思路。

这里特别感谢他一下~~



[ 本帖最后由 pangding 于 2011-5-8 17:22 编辑 ]
2011-05-08 17:19
a396693980
Rank: 1
等 级:新手上路
帖 子:9
专家分:0
注 册:2011-4-20
收藏
得分:0 
回复 16楼 pangding
除了谢谢之外我真的不知道用什么话来代替,有的激动。谢谢你,也谢谢你的那位同学。
2011-05-08 17:40
棉雨
Rank: 5Rank: 5
等 级:职业侠客
帖 子:174
专家分:368
注 册:2011-4-22
收藏
得分:0 
回复 3楼 寒风中的细雨
崇拜~~
2011-05-09 21:24
棉雨
Rank: 5Rank: 5
等 级:职业侠客
帖 子:174
专家分:368
注 册:2011-4-22
收藏
得分:0 
回复 14楼 pangding
太厉害了~~
2011-05-09 21:26
快速回复:矩阵加减运算,求公式,讲解很长,耐心看下去。不甚感激。
数据加载中...
 
   



关于我们 | 广告合作 | 编程中国 | 清除Cookies | TOP | 手机版

编程中国 版权所有,并保留所有权利。
Powered by Discuz, Processed in 0.044622 second(s), 7 queries.
Copyright©2004-2024, BCCN.NET, All Rights Reserved