辗转相除法求两个数的最大公约数的步骤
用辗转相除法求两个数的最大公约数的步骤如下:先用小的一个数除大的一个数,得第一个余数;
再用第一个余数除小的一个数,得第二个余数;
又用第二个余数除第一个余数,得第三个余数;
这样逐次用后一个数去除前一个余数,直到余数是0为止。那么,最后一个除数就是所求的最大公约数(如果最后的除数是1,那么原来的两个数是互质数)。
例如求1515和600的最大公约数,
第一次:用600除1515,商2余315;
第二次:用315除600,商1余285;
第三次:用285除315,商1余30;
第四次:用30除285,商9余15;
第五次:用15除30,商2余0。
1515和600的最大公约数是15。
辗转相除法是求两个数的最大公约数的方法。如果求几个数的最大公约数,可以先求两个数的最大公约数,再求这个最大公约数与第三个数的最大公约数。这样依次下去,直到最后一个数为止。最后所得的一个最大公约数,就是所求的几个数的最大公约数。