转自哪忘了
天下算法一大抄
你可赞同呢
杨辉三角形是形如
1
1
1
1
2
1
1
3
3
1
1
4
6
4
1
的三角形,其实质是二项式(a+b)的n次方展开后各项的系数排成的三角形,它的特点是左右两边全是1,从第二行起,中间的每一个数是上一行里相邻两个数之和。这个题目常用于程序设计的练习。
下面给出六种不同的解法。
解法一
#include
<stdio.h>
main()
{
int i,j,n=0,a[17][17]={0};
while(n<1 || n>16)
{
printf("请输入杨辉三角形的行数:");
scanf("%d",&n);
}
for(i=0;i<n;i++)
a[i][0]=1;
/*第一列全置为一*/
for(i=1;i<n;i++)
for(j=1;j<=i;j++)
a[i][j]=a[i-1][j-1]+a[i-1][j];/*每个数是上面两数之和*/
for(i=0;i<n;i++)
/*输出杨辉三角*/
{
for(j=0;j<=i;j++)
printf("%5d",a[i][j]);
printf("\n");
}
}
点评:解法一是一般最容易想到的解法,各部分功能独立,程序浅显易懂。
解法二
#include
<stdio.h>
main()
{
int i,j,n=0,a[17][17]={1};
while(n<1 || n>16)
{
printf("请输入杨辉三角形的行数:");
scanf("%d",&n);
}
for(i=1;i<n;i++)
{
a[i][0]=1;
/*第一列全置为一*/
for(j=1;j<=i;j++)
a[i][j]=a[i-1][j-1]+a[i-1][j];
/*每个数是上面两数之和*/
}
for(i=0;i<n;i++)
/*输出杨辉三角*/
{
for(j=0;j<=i;j++)
printf("%5d",a[i][j]);
printf("\n");
}
}
点评:解法二是在解法一的基础上,把第一列置为1的命令移到下面的双重循环中,减少了一个循环。注意初始化数组的变化。
解法三
#include
<stdio.h>
main()
{
int i,j,n=0,a[17][17]={0,1};
while(n<1 || n>16)
{
printf("请输入杨辉三角形的行数:");
scanf("%d",&n);
}
for(i=1;i<=n;i++)
for(j=1;j<=i;j++)
a[i][j]=a[i-1][j-1]+a[i-1][j];
/*每个数是上面两数之和*/
for(i=1;i<=n;i++)
/*输出杨辉三角*/
{
for(j=1;j<=i;j++) printf("%5d",a[i][j]);
printf("\n");
}
}
点评:解法三是在解法一、二的基础上,把第一列置为1的命令去掉了,注意初始化数组的变化。
解法四
#include
<stdio.h>
main()
{
int i,j,n=0,a[17][17]={0,1};
while(n<1 || n>16)
{
printf("请输入杨辉三角形的行数:");
scanf("%d",&n);
}
for(i=1;i<=n;i++)
{
for(j=1;j<=i;j++)
{
a[i][j]=a[i-1][j-1]+a[i-1][j];
/*每个数是上面两数之和*/
printf("%5d",a[i][j]);
/*输出杨辉三角*/
}
printf("\n");
}
}
点评:解法四是在解法三的基础上,把计算和打印合并在一个双重循环中。
解法五
#include <stdio.h>
main()
{
int i,j,n=0,a[17]={1},b[17];
while(n<1 || n>16)
{
printf("请输入杨辉三角形的行数:");
scanf("%d",&n);
}
for(i=0;i<n;i++)
{
b[0]=a[0];
for(j=1;j<=i;j++)
b[j]=a[j-1]+a[j];
/*每个数是上面两数之和*/
for(j=0;j<=i;j++)
/*输出杨辉三角*/
{
a[j]=b[j];
/*把算得的新行赋给a,用于打印和下一次计算*/
printf("%5d",a[j]);
}
printf("\n");
}
}
点评:解法一到解法四都用了二维数组,占用的空间较多。而解法五只使用了两个一维数组。
解法六
#include
<stdio.h>
main()
{
int i,j,n=0,a[17]={0,1},l,r;
while(n<1 || n>16)
{
printf("请输入杨辉三角形的行数:");
scanf("%d",&n);
}
for(i=1;i<=n;i++)
{
l=0;
for(j=1;j<=i;j++)
{
r=a[j];
a[j]=l+r;
/*每个数是上面两数之和*/
l=r;
printf("%5d",a[j]);
/*输出杨辉三角*/
}
printf("\n");
}
}
点评:解法六只用了一个一维数组和两个临时变量
有关代码如何优化
请阅读《编译原理》十一章
PS
全书我只看懂这里的一点点
[[it] 本帖最后由 liyanhong 于 2008-6-1 22:34 编辑 [/it]]