做3D游戏用的上
四元数
四元数是由威廉·卢云·哈密顿在1843年爱尔兰发现的数学概念。四元数的乘法不符合交换律,故它似乎破坏了科学知识中一个最基本的原则。 明确地说,四元数是复数的不可交换延伸。如把四元数的集合考虑成多维实数空间的话,四元数就代表著一个四维空间,相对於复数为二维空间。 四元数是除法环的一个例子。除了没有乘法的交换律外,除法环与场是相类的。特别地,乘法的结合律仍旧存在、非零元素仍有唯一的逆元素。 四元数形成一个在实数上的四维结合代数(事实上是除法代数),并包括复数,但不与复数组成结合代数。 四元数(以及实数和复数)都只是有限维的实数结合除法代数。 四元数的不可交换性往往导致一些令人意外的结果,例如四元数的 n-阶多项式能有多於 n 个不同的根。 |