两道算法题,我们老师估计没人能写
1.前向搜索规划伪代码ForwardSearching(KB, InitState, GoalState)
Input:KB, state space and action modes;
InitState, start state;
GoalState, objective;
Output:an action sequence or failure;
currState <-- {InitState};
plan <-- { };
Respeat
if currState satisfies GoalState
return plan;
applicable <-- {a | a is a ground operator in KB that Precond(a) is true in currState};
if applicable = Ø
return failure;
a = ChooseAction(applicable);
currState <-- Effect(a);
plan <-- plan ∪ a;
Utill Maximum Iteration.
2.FOLL算法伪代码
FOLLAlg(Target, TrainData)
Input:Target, post - condition predicate;
TrainData, training samples;
Output:Rules.
PosSamples <-- Positive Samples of TrainData;
NegSamples <-- Negative Samples of TrainData;
Rules <-- { };
While PosSamples is not empty, do
Clause <-- Target with empty pre - condition;
NewNegSamples <-- NegSamples;
While NewNegSamples is not empty, do
LiteralCan <-- GetLiteralCandidates(TrainData);
BestLiteral <-- arg max I ∈ LiteraICan Gain(I, TrainData, Clause);
Add BestLiteral to the pre - condition of Clause;
Remove samples from NewNegSamples that satisfy Clause;
Rules <-- Rules + Clause;
Remove samples from PosSamples that satisfy Rules;
Reurn Rules.