| 网站首页 | 业界新闻 | 小组 | 威客 | 人才 | 下载频道 | 博客 | 代码贴 | 在线编程 | 编程论坛
欢迎加入我们,一同切磋技术
用户名:   
 
密 码:  
共有 966 人关注过本帖
标题:[紧急求助]用分治算法解平面最接近点对问题
只看楼主 加入收藏
langtao851
Rank: 1
等 级:新手上路
帖 子:6
专家分:0
注 册:2006-12-15
收藏
 问题点数:0 回复次数:0 
[紧急求助]用分治算法解平面最接近点对问题

关于最接近点对问题
给定平面上n个点,找出其中一对点,使得在n个点所构成的所有点对中,该点对的距离最小。
这个问题很容易理解,似乎也不难解决:
先求第1个点与其余n-1个点的距离;
再求第2个点与其余n-2个点的距离;
再求第3个点与其余n-3个点的距离;
…………………………………………
再求第n-1个点与其余1个点的距离;
然后找出最小值。但这种算法对于n很大的情况是不合适的。
分治法:
为了使问题易于理解和分析,我们先来考虑一维的情形。此时S中的n个点退化为x轴上的n个实数x1,x2,..,xn。最接近点对即为这n个实数中相差最小的2个实数。我们显然可以先将x1,x2,..,xn排好序,然后,用一次线性扫描就可以找出最接近点对。对这种一维的简单情形,我们尝试用分治法来求解,并希望能推广到二维的情形。

图1 一维情形的分治法
假设我们用x轴上某个点m将S划分为2个子集S1和S2,使得S1={x∈S|x≤m};S2={x∈S|x>m}。这样一来,对于所有p∈S1和q∈S2有p<q。
递归地在S1和S2上找出其最接近点对{p1,p2}和{q1,q2},并设δ=min{|p1-p2|,|q1-q2|},S中的最接近点对或者是{p1,p2},或者是{q1,q2},或者是某个{p3,q3},其中p3∈S1且q3∈S2。如图1所示。 
我们注意到,如果S的最接近点对是{p3,q3},即|p3-q3|<δ,则p3和q3两者与m的距离不超过δ,即|p3-m|<δ,|q3-m|<δ,也就是说,p3∈(m-δ,m],q3∈(m,m+δ]。由于在S1中,每个长度为δ的半闭区间至多包含一个点(否则必有两点距离小于δ),并且m是S1和S2的分割点,因此(m-δ,m]中至多包含S中的一个点。同理,(m,m+δ]中也至多包含S中的一个点。由图1可以看出,如果(m-δ,m]中有S中的点,则此点就是S1中最大点。同理,如果(m,m+δ]中有S中的点,则此点就是S2中最小点。
因此,我们用线性时间就能找到区间(m-δ,m]和(m,m+δ]中所有点,即p3和q3。从而我们用线性时间就可以将S1的解和S2的解合并成为S的解。
选取分割点的选取通过分治法中“平衡子问题”的方法加以解决。即:m=[max(S)+min(S)]/2。
这个算法看上去比用排序加扫描的算法复杂,然而这个算法可以向二维推广。
下面我们来考虑二维的情形。
此时S中的点为平面上的点,它们都有2个坐标值x和y。为了将平面上点集S线性分割为大小大致相等的2个子集S1和S2,我们选取一垂直线l(方程:x=m)来作为分割直线。其中m为S中各点x坐标的中位数。由此将S分割为S1={p∈S|px≤m}和S2={p∈S|px>m}。从而使S1和S2分别位于直线l的左侧和右侧,且S=S1∪S2 。由于m是S中各点x坐标值的中位数,因此S1和S2中的点数大致相等。
递归地在S1和S2上解最接近点对问题,我们分别得到S1和S2中的最小距离δ1和δ2。现设δ=min(δ1,δ2)。
若S的最接近点对(p,q)之间的距离d(p,q)<δ则p和q必分属于S1和S2。不妨设p∈S1,q∈S2。那么p和q距直线l的距离均小于δ。因此,我们若用P1和P2分别表示直线l的左边和右边的宽为δ的2个垂直长条,则p∈S1,q∈S2,如图2所示。

图2 距直线l的距离小于δ的所有点
在一维的情形,距分割点距离为δ的2个区间(m-δ,m](m,m+δ]中最多各有S中一个点。因而这2点成为唯一的末检查过的最接近点对候选者。
二维的情形则要复杂些,此时,P1中所有点与P2中所有点构成的点对均为最接近点对的候选者。在最坏情况下有n2/4对这样的候选者。但是P1和P2中的点具有以下的稀疏性质,它使我们不必检查所有这n2/4对候选者。考虑P1中任意一点p,它若与P2中的点q构成最接近点对的候选者,则必有d(p,q)<δ。满足这个条件的P2中的点有多少个呢?容易看出这样的点一定落在一个δ×2δ的矩形R中,如图3所示。

图3 包含点q的δ×2δ的矩形R
由δ的意义可知P2中任何2个S中的点的距离都不小于δ。由此可以推出矩形R中最多只有6个S中的点。事实上,我们可以将矩形R的长为2δ的边3等分,将它的长为δ的边2等分,由此导出6个(δ/2)×(2δ/3)的矩形。如图4(a)所示。

图4 矩形R中点的稀疏性
若矩形R中有多于6个S中的点,则由鸽舍原理易知至少有一个δ×2δ的小矩形中有2个以上S中的点。设u,v是这样2个点,它们位于同一小矩形中,则

因此d(u,v)≤5δ/6<δ 。这与δ的意义相矛盾。也就是说矩形R中最多只有6个S中的点。图4(b)是矩形R中含有S中的6个点的极端情形。由于这种稀疏性质,对于P1中任一点p,P2中最多只有6个点与它构成最接近点对的候选者。因此,在分治法的合并步骤中,我们最多只需要检查6×n/2=3n对候选者,而不是n2/4对候选者。
我们只知道对于P1中每个S1中的点p最多只需要检查P2中的6个点,但是我们并不确切地知道要检查哪6个点。为了解决这个问题,我们可以将p和P2中所有S2的点投影到垂直线l上。由于能与p点一起构成最接近点对候选者的S2中点一定在矩形R中,所以它们在直线l上的投影点距p在l上投影点的距离小于δ。由上面的分析可知,这种投影点最多只有6个。因此,若将P1和P2中所有S的点按其y坐标排好序,则对P1中所有点p,对排好序的点列作一次扫描,就可以找出所有最接近点对的候选者,对P1中每一点最多只要检查P2中排好序的相继6个点。
至此,我们可以给出用分治法求二维最接近点对的算法。

搜索更多相关主题的帖子: 解平面 算法 分治 
2006-12-25 14:53
快速回复:[紧急求助]用分治算法解平面最接近点对问题
数据加载中...
 
   



关于我们 | 广告合作 | 编程中国 | 清除Cookies | TOP | 手机版

编程中国 版权所有,并保留所有权利。
Powered by Discuz, Processed in 0.018101 second(s), 8 queries.
Copyright©2004-2024, BCCN.NET, All Rights Reserved