NetBSD的红黑树实现
原来论坛有字符上限的限制。不得不截断发在1.2.3楼。
程序代码:
/* $NetBSD: tree.h,v 1.8 2004/03/28 19:38:30 provos Exp $ */ /* $OpenBSD: tree.h,v 1.7 2002/10/17 21:51:54 art Exp $ */ /* $FreeBSD$ */ /*- * Copyright 2002 Niels Provos <provos@citi.umich.edu> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _SYS_TREE_H_ #define _SYS_TREE_H_ #include <sys/cdefs.h> /* * This file defines data structures for different types of trees: * splay trees and red-black trees. * * A splay tree is a self-organizing data structure. Every operation * on the tree causes a splay to happen. The splay moves the requested * node to the root of the tree and partly rebalances it. * * This has the benefit that request locality causes faster lookups as * the requested nodes move to the top of the tree. On the other hand, * every lookup causes memory writes. * * The Balance Theorem bounds the total access time for m operations * and n inserts on an initially empty tree as O((m + n)lg n). The * amortized cost for a sequence of m accesses to a splay tree is O(lg n); * * A red-black tree is a binary search tree with the node color as an * extra attribute. It fulfills a set of conditions: * - every search path from the root to a leaf consists of the * same number of black nodes, * - each red node (except for the root) has a black parent, * - each leaf node is black. * * Every operation on a red-black tree is bounded as O(lg n). * The maximum height of a red-black tree is 2lg (n+1). */ #define SPLAY_HEAD(name, type) \ struct name { \ struct type *sph_root; /* root of the tree */ \ } #define SPLAY_INITIALIZER(root) \ { NULL } #define SPLAY_INIT(root) do { \ (root)->sph_root = NULL; \ } while (/*CONSTCOND*/ 0) #define SPLAY_ENTRY(type) \ struct { \ struct type *spe_left; /* left element */ \ struct type *spe_right; /* right element */ \ } #define SPLAY_LEFT(elm, field) (elm)->field.spe_left #define SPLAY_RIGHT(elm, field) (elm)->field.spe_right #define SPLAY_ROOT(head) (head)->sph_root #define SPLAY_EMPTY(head) (SPLAY_ROOT(head) == NULL) /* SPLAY_ROTATE_{LEFT,RIGHT} expect that tmp hold SPLAY_{RIGHT,LEFT} */ #define SPLAY_ROTATE_RIGHT(head, tmp, field) do { \ SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(tmp, field); \ SPLAY_RIGHT(tmp, field) = (head)->sph_root; \ (head)->sph_root = tmp; \ } while (/*CONSTCOND*/ 0) #define SPLAY_ROTATE_LEFT(head, tmp, field) do { \ SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(tmp, field); \ SPLAY_LEFT(tmp, field) = (head)->sph_root; \ (head)->sph_root = tmp; \ } while (/*CONSTCOND*/ 0) #define SPLAY_LINKLEFT(head, tmp, field) do { \ SPLAY_LEFT(tmp, field) = (head)->sph_root; \ tmp = (head)->sph_root; \ (head)->sph_root = SPLAY_LEFT((head)->sph_root, field); \ } while (/*CONSTCOND*/ 0) #define SPLAY_LINKRIGHT(head, tmp, field) do { \ SPLAY_RIGHT(tmp, field) = (head)->sph_root; \ tmp = (head)->sph_root; \ (head)->sph_root = SPLAY_RIGHT((head)->sph_root, field); \ } while (/*CONSTCOND*/ 0) #define SPLAY_ASSEMBLE(head, node, left, right, field) do { \ SPLAY_RIGHT(left, field) = SPLAY_LEFT((head)->sph_root, field); \ SPLAY_LEFT(right, field) = SPLAY_RIGHT((head)->sph_root, field);\ SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(node, field); \ SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(node, field); \ } while (/*CONSTCOND*/ 0) /* Generates prototypes and inline functions */ #define SPLAY_PROTOTYPE(name, type, field, cmp) \ void name##_SPLAY(struct name *, struct type *); \ void name##_SPLAY_MINMAX(struct name *, int); \ struct type *name##_SPLAY_INSERT(struct name *, struct type *); \ struct type *name##_SPLAY_REMOVE(struct name *, struct type *); \ \ /* Finds the node with the same key as elm */ \ static __inline struct type * \ name##_SPLAY_FIND(struct name *head, struct type *elm) \ { \ if (SPLAY_EMPTY(head)) \ return(NULL); \ name##_SPLAY(head, elm); \ if ((cmp)(elm, (head)->sph_root) == 0) \ return (head->sph_root); \ return (NULL); \ } \ \ static __inline struct type * \ name##_SPLAY_NEXT(struct name *head, struct type *elm) \ { \ name##_SPLAY(head, elm); \ if (SPLAY_RIGHT(elm, field) != NULL) { \ elm = SPLAY_RIGHT(elm, field); \ while (SPLAY_LEFT(elm, field) != NULL) { \ elm = SPLAY_LEFT(elm, field); \ } \ } else \ elm = NULL; \ return (elm); \ } \ \ static __inline struct type * \ name##_SPLAY_MIN_MAX(struct name *head, int val) \ { \ name##_SPLAY_MINMAX(head, val); \ return (SPLAY_ROOT(head)); \ }
[此贴子已经被作者于2017-7-6 23:32编辑过]