用迪杰斯特拉算法(Dijkstra)实现图的最短路径 C语言编写
如题 我离散数学学的不是很好,望高手指点 还有一点 要求实现可视化
#include <stdio.h> /* vertex 顶点 source 源点 path length 路径长度 pioneer 前驱 adjacent matrix 邻接矩阵 */ #define MaxSize 5 #define Infinity 1000 void Dijkstra(int vertex, int source, int PathLength[], int AdjacentMatrix[MaxSize][MaxSize],int pioneer[MaxSize]) { //标记顶点是否在集合S中,如果是,则值为1,否为0 bool sign[vertex]; for(int i=0; i<vertex; i++) { //初始化源点到其他各个顶点的最短路径长度 PathLength[i]=AdjacentMatrix[source][i]; sign[i]=false; //满足条件,说明顶点i与源点不相邻 if(PathLength[i]==Infinity) { pioneer[i]=-1; } else { pioneer[i]=source; } } //初始化时,集合S中只有一个元素,源点 PathLength[source]=0; sign[source]=true; for(int i=0; i<vertex; i++) { int temp=Infinity; int t=source; for(int j=0; j<vertex; j++) { if((!sign[j]) && (PathLength[j]<temp)) { t=j; temp=PathLength[j]; } } if(t==source) break; sign[t]=true; for(int j=0; j<vertex; j++) { if((!sign[j]) && (AdjacentMatrix[t][j]!=Infinity)) { if(PathLength[j]>(PathLength[t]+AdjacentMatrix[t][j])) { PathLength[j]=PathLength[t]+AdjacentMatrix[t][j]; pioneer[j]=t; } } } } } void find(int pineer[MaxSize], int i, int AdjacentMatrix[MaxSize][MaxSize]) { while(pineer[i]!=-1) { //反向的 printf("(%d, %d)%d ", pineer[i], i, AdjacentMatrix[pineer[i]][i]); i=pineer[i]; } } int main(void) { int AdjacentMatrix[MaxSize][MaxSize]={Infinity,8,32,Infinity,Infinity, 12,Infinity,16,15,Infinity, Infinity,29,Infinity,Infinity,13, Infinity,21,Infinity,Infinity,7, Infinity,Infinity,27,19,Infinity }; int vertex=MaxSize; int source=3; int PathLength[MaxSize]; int pioneer[MaxSize];//记录前顶点 for(int i=0; i<MaxSize; i++) { //初始化前顶点为无穷大 pioneer[i]=Infinity; } printf("请输入源点(0~4):"); scanf("%d", &source); printf("\n最短路径和长度\n"); Dijkstra(vertex, source, PathLength, AdjacentMatrix, pioneer); for(int i=0; i<vertex; i++) { if(i==source) continue; printf("\n源点%d到顶点%d : %d ", source, i, PathLength[i]); find(pioneer, i, AdjacentMatrix); printf("\n"); } return 0; }