求1到100之间的幸运数
求1到100之间的幸运数如题:
幸运数是经由类似埃拉托斯特尼筛法〔一种用删去法检定质数的算法〕的算法后留下的整数集合,是在1955年波兰数学家乌拉姆提出。
由一组由 1 开始的数列为例:
1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,先将数列中的第 2n 个数(偶数)删除,只留下奇数:
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 剩下数形成一数列,此数列的第二项为 3,因此将新数列的第 3n 个数删除:
1, 3, 7, 9, 13, 15, 19, 21, 25,新数列的第三项为 7,因此将新数列的第 7n 个数删除:
1, 3, 7, 9, 13, 15, 21, 25,若一直重复上述的步骤,最后剩下的数就是幸运数(OEIS中的数列A00959):
1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73, 75, 79, 87, 93, 99, ... 幸运数有部份特性和质数相同,例如幸运数的分布情形也可用素数定理来分析,而哥德巴赫猜想也有以幸运数为基准的版本。